Authors:
Abdelhamid Harabi Ceramics Laboratory, Mentouri University, Constantine 25000, Algeria

Search for other papers by Abdelhamid Harabi in
Current site
Google Scholar
PubMed
Close
,
Djamel Belamri Ceramics Laboratory, Mentouri University, Constantine 25000, Algeria

Search for other papers by Djamel Belamri in
Current site
Google Scholar
PubMed
Close
,
Noureddine Karboua Ceramics Laboratory, Mentouri University, Constantine 25000, Algeria

Search for other papers by Noureddine Karboua in
Current site
Google Scholar
PubMed
Close
, and
Fatima-Zohra Mezahi Ceramics Laboratory, Mentouri University, Constantine 25000, Algeria

Search for other papers by Fatima-Zohra Mezahi in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

In this study, hydoxyapatite (HA) prepared from calcined bovine bone was studied. Two methods were used for HA sintering: conventional sintering (CS) and microwave sintering (MS). HA was obtained by calcination of bovine bone at 800 °C for 4 h followed by wet ball milling. Afterwards, the powder was compacted under 75 MPa and sintered for 2 h at different temperatures, from 1050 to 1200 °C. It has been found that the bulk density of HA increases by increasing sintering temperature when both CS and MS were used. Nevertheless, at the same temperature and for a shorter time (15 min), the HA sintered by microwave were characterised by a density relatively higher than that of sintered by conventional furnace. For example, at 1100 °C the bulk densities of samples using CS and MS were about 2.49 (for 120 min) and 2.93 (for 15 min) g/cm3, respectively. Furthermore, a near theoretical density (98.6%) was obtained when HA samples were sintered at 1200 °C for 15 min only but using the proposed MS, which was much higher than that (89.7%) of HA samples sintered at the same temperature for longer holding time (120 min). Besides this, the X-ray analyses have shown that heat-treatment, using these two processes, has lead to HA decomposition into tricalcium phosphate and/or tetracalcium phosphate.

  • 1. Hench, LL. Bioceramics: from concept to clinic. J Am Ceram Soc. 1991;74:14871510 .

  • 2. Liu, C, Huang, Shen YW, Cui, J. Kinetics of hydroxyapatite precipitation at pH 10 to 11. Biomaterials 2001 22:301306 .

  • 3. Jarcho, M, Bolen, CH, Thomas, MB, Bobick, J, Kay, JF, Doremus, RH. Hydroxylapatite synthesis and characterization in dense polycrystalline form. J Mater Sci 1976 11:20272035 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 4. Osaka, A, Miura, Y, Takeuchi, K, Asada, M, Takahashi, K. Calcium apatite prepared from calcium hydroxide and orthophosphoric acid. J Mater Sci Mater in Med 1991 25:5155 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 5. Jillavenkatesa, A Condrate, RA Sr Sol-gel processing of hydroxyapatite. J Mater Sci 1998 33:41114119 .

  • 6. Varma, HK, Kalkura, SN, Sivakumar, R. Polymeric precursor route for the preparation of calcium phosphate compounds. Ceram Int 1998 24:467470 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7. Anee Kuriakose, T, Narayana, S, Palanichamy, M, Arivuoli, D, Dierks, K, Bocelli, G, Betzel, C. Synthesis of stoichiometric nano crystalline by hydroxyapatite by ethanol based sol-gel technique at low temperature. J Cryst Growth 2004 263:517523 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8. Hing, KA, Best, SM, Tanner, KE, Bonfield, W, Revell, PA. Quantification of bone ingrowth within bone-derived porous hydroxyapatite lmplants of varying density. J Mater Sci Mater in Med 1999 10:663670 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 9. Joschek, S, Nies, B, Krotz, R, Goepferich, A. Chemical and physicochemical characterization of porous hydroxyapatite ceramics made of natural bone. Biomaterials 2000 21:16451658 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10. Mezahi, F, Harabi, A, Zouai, S, Achour, S, Bernache-Assollant, D. Effect of stabilized ZrO2. Al2O3 and TiO2 on sintering of hydroxyapatite. Mater Sci Forum 2005 492–493:241248 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11. Mezahi, FZ, Oudadesse, H, Harabi, A, Lucas-Girot, A, Le Gal, Y, Chaair, H, Cathelineau, G. Dissolution kinetic and structural behaviour of natural hydroxyapatite vs. thermal treatment: comparison to synthetic hydroxyapatite. J Therm Anal Calorim 2009 95:2129 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 12. Xie, Z, Yang, J, Huang, Y. Microwave processing and properties with different dielectric loss. J Eur Ceram Soc 1999 19:381387 .

  • 13. Tinga WR . Fundamentals of microwave-material interactions and sintering. In: Sutton WH, Brooks MH, Chabinsky IJ, editors. Microwave processing of materials, vol 124. Pittsburgh PA: Materials Research Society; 1988. p. 3343.

    • Search Google Scholar
    • Export Citation
  • 14. Metaxas AC , Binner JGP. Advanced ceramic processing technology. In: Binner JGP, editor. Microwave processing of ceramics. New Jersey: Noyes Publications; 1990. p. 285367.

    • Search Google Scholar
    • Export Citation
  • 15. Janney MA , Kimrey HD. Materials research society symposium proceedings: diffusion-controlled processes in microwave fired oxide ceramics. In: Snyder WB, Sutton WH Jr, Iskander MF, Johnson DL, editors. Microwave processing of materials II, vol 189. Pittsburgh: Materials Research Society; 1991. p. 215227.

    • Search Google Scholar
    • Export Citation
  • 16. Sheppard, LM. Microwave sintering of Ce-Y-ZTA composite. Am Ceram Soc Bull. 1988;67:16561661.

  • 17. Katz, JD, Blake, RD. Microwave sintering of multiple alumina and composite components. Am Ceram Soc Bull 1991 70:13041307.

  • 18. Harabi A , Karboua N, Achour S. Patent bending. Mentouri University, Constantine, Algeria.

  • 19. Tadic, D, Epple, M. A thorough physicochemical characterisation of calcium phosphate-based bone substitution materials in comparison to natural bone. Biomaterials 2004 25:987994 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 20. Karboua N . Realization of high temperature heating system using a domestic microwave oven 2.45 GHz. Magister Thesis, Mentouri University, Constantine, Algeria 2004.

    • Search Google Scholar
    • Export Citation
  • 21. Driessens, FCM. The mineral in bone. Dentin and tooth enamel. Bull Soc Chim Belg. 1980;89:663689 .

  • 22. Posner, AS. Crystal chemistry of bone mineral. Physiol Rev. 1969;49:760792.

  • 23. Hancock, RGV, Grynpas, MD, Alpert, B. Are archaeological bones similar to modern bones? An INAA assessment. J Radioanal Nucl Chem 1987 110:283291 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 24. Haberko, K, Mirosław, Bućko M, Brzezińska-Miecznik, J, Haberko, M, Mozgawa, W, Panz, T, Pyda, A, Zarębski, J. Natural hydroxyapatite—its behaviour during heat treatment. J Eur Ceram Soc 2006 26:537542 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 25. Koumoulidis, GC, Trapalis, CC, Vaimakis, TC. Sintering of hydroxyapatite lath-like powders. J Therm Anal Calorim 2006 84:165174 .

  • 26. Petkova, V, Yaneva, V. Thermal behavior and phase transformations of nanosized carbonate apatite (Syria). J Therm Anal Calorim 2010 99:179189 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 27. Mendes, LC, Rodrigues, RC, Silva, EP. Thermal, structural and morphological assessment of PVP/HA composites. J Therm Anal Calorim 2010 101:899905 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 28. Pan, Y, Huang, JL, Shao, CY. Preparation of β-TCP with high thermal stability by solid reaction route. J Mater Sci 2003 38:10491056 .

  • 29. Vani, R, Girija, EK, Elayaraja, K, Prakash Parthiban, S, Kesavamoorthy, R, Narayana Kalkura, S. Hydrothermal synthesis of porous triphasic hydroxyapatite/(α and β) tricalcium phosphate. J Mater Sci 2009 20:S34S48.

    • Search Google Scholar
    • Export Citation
  • 30. Priya, A, Nath, S, Biswas, K, Basu, B. In vitro dissolution of calcium phosphate-mullite composite in simulated body fluid. J Mater Sci Mater Med 2010 21:18171828 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 31. Fang, Y, Agrawal, DK, Roy, DM, Roy, R. Microwave sintering of hydroxyapatite ceramics. J Mater Res 1994 9:180187 .

  • 32. Fang, Y, Agrawal, DK, Roy, DM, Roy, R. Fabrication of porous hydroxyapatite ceramics by microwave processing. J Mater Res 1992 7:490493 .

  • 33. Locardi, B, Pazzaglia, VE, Gabbi, C, Profilo, B. Thermal behavior of hydroxyapatite intended for medical applications. Biomaterials 1993 14:437441 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 34. Legeros RZ , Legeros JP. Dense hydroxyapatite. In: Hench LL, Wilson J, editors. An introduction to bioceramics. Singapore: World Scientific; 1993. p. 139180.

    • Search Google Scholar
    • Export Citation
  • 35. Cihlar, J, Buchal, A, Trunec, M. Kinetics of thermal decomposition of hydroxyapatite bioceramics. J Mater Sci 1999 34:61216131 .

  • Collapse
  • Expand

To see the editorial board, please visit the website of Springer Nature.

Manuscript Submission: HERE

For subscription options, please visit the website of Springer Nature.

Journal of Thermal Analysis and Calorimetry
Language English
Size A4
Year of
Foundation
1969
Volumes
per Year
1
Issues
per Year
24
Founder Akadémiai Kiadó
Founder's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Publisher Akadémiai Kiadó
Springer Nature Switzerland AG
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
CH-6330 Cham, Switzerland Gewerbestrasse 11.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 1388-6150 (Print)
ISSN 1588-2926 (Online)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Jan 2024 10 1 0
Feb 2024 15 0 0
Mar 2024 22 0 0
Apr 2024 12 0 0
May 2024 0 0 0
Jun 2024 14 0 0
Jul 2024 0 0 0