View More View Less
  • 1 Campus of Santiago de Compostela, Faculty of Physics, University of Santiago de Compostela, Santiago de Compostela, Spain
  • 2 Escola Politécnica Superior, Campus of Lugo, University of Santiago de Compostela, Santiago de Compostela, Spain
Restricted access

Abstract

The rational and sustainable exploitation of natural resources is one the priority objectives of our consumer society as an unavoidable strategy for survival. In previous articles, research group TERBIPROMAT has established the bases for the elaboration of energy maps of forest biomass. With those data, it is possible to classify the species in terms of their energy content and of their possible application as biofuels following European Norm CEN/TS 14961/2005 on solid biofuels. Main forest species used in this study were Populus and Paulownia. These species have a fast growth and produce big amounts of energetic biomass. To complete this study a comparison with autochthonous forest species, Eucalyptus and Pinus, was made. In this study, a thermogravimetric analysis is employed to qualitative study the resistance to thermal degradation of different forest species. These studies complete those made through static bomb calorimetry, elemental analysis, and different mechanical tests trying to get relationships between thermal behaviour and some physical properties.

  • 1. Ministerio de Agricultura, Pesca y Alimentación, Tercer Inventario Forestal Nacional. 1997–2006, Madrid:Ed. Ministerio de Medio Ambiente 2000.

    • Search Google Scholar
    • Export Citation
  • 2. PLADIGA 2010. Consellería de Medio Rural. Dirección Xeral de Montes. Xunta de Galicia. 2010. http://mediorural.xunta.es/fileadmin/arquivos/forestal/pladiga/2010/1_MEMORIA_WEB_PLADIGA_2010.pdf. Accessed 14 Sep 2010.

    • Search Google Scholar
    • Export Citation
  • 3. Núñez-Regueira, L, Proupín-Castiñeiras, J, Rodríguez-Añón, JA. Energy evaluation of forest residues originated from Eucalyptus globulus Labill in Galicia. Bioresour Technol 2002 82:513 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 4. Forest products laboratory, Word Engineering Handbook, New Jersey: Prentice; 1990.

  • 5. Ragland, KW, Aerts, DJ, Baker, AJ. Properties of wood for combustion analysis. Bioresour Technol 1991 37:161168 .

  • 6. Kemp, RB. Nonscanning calorimetry 1999 Gallagher, PK eds. Handbook of thermal analysis and calorimetry Elsevier Amsterdam 1032.

  • 7. ASTM D3173–03 (2008) Standard test method for moisture in the analysis sample of coal and coke.

  • 8. Blake, GR, Hartge, KH. Bulk density 1998 Klute, A eds. Methods of soil analysis, part 1 physical and mineralogical methods 2 American Society of Agronomy, Inc. and Soil Science Society of America, Inc Madison 363375.

    • Search Google Scholar
    • Export Citation
  • 9. Blake, GR, Hartge, KH 1998 Particle density Klute, A eds. Methods of soil analysis, part 1 physical and mineralogical methods 2 American Society of Agronomy, Inc. and Soil Science Society of America, Inc Madison 377382.

    • Search Google Scholar
    • Export Citation
  • 10. Forest products laboratory. Wood handbook: Wood as an engineering material. Agric. Handbook t2 (rev) Washington, DC: US Department of Agriculture 1987.

    • Search Google Scholar
    • Export Citation
  • 11. Hubbard, W, Scott, D, Waddington, G Experimental thermochemistry, Rossini F., 1, Chap. 5 1956 Interscience Publishers Inc New York 7787.

    • Search Google Scholar
    • Export Citation
  • 12. Núñez-Regueira, L, Rodríguez-Añón, J, Proupín-Castiñeiras, J, Labarta-Carreño, C. Use of bomb calorimetry to assess recovery of waste industrial mineral oils through regeneration. J Therm Anal Calorim 2002 70:93101 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13. ASTM E872–82 (2006) Standard test method for volatile matter in the analysis of particulate wood fuels.

  • 14. ASTM D3175–07 (2006) Standard test method for volatile matter in the analysis sample of coal and coke.

  • 15. ISO 562:2010 Hard coal and coke-determination of volatile matter.

  • 16. Standard test method for ash in Wood D 1102–84 Reapproved 2007.

  • 17. ASTM D3174-04 (2003) Standard test method for ash in the analysis sample of coal and coke from coal.

  • 18. ISO 1171:2010 Solid mineral fuels-determination of ash.

  • 19. Liodakis, S, Bakirtzis, D, Lois, E. TG and autoignition studies on forest fuels. J Therm Anal Calorim 2002 69:519528 .

  • 20. Kwok, QSM, Jones, DEG, Nunez, GF, Charland, JP, Dionne, S. Characterization of bio-fuel and bio-fuel ash. J Therm Anal Calorim 2004 78:173184 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 21. Strezov, V, Moghtaderi, B, Lucas, JA. Study of decomposition of selected biomass samples. J Therm Anal Calorim 2003 72:10411048 .

  • 22. Leroy, V, Cancellieri, D, Leoni, E. Relation between forest fuels composition and energy emitted during their thermal degradation. J Therm Anal Calorim 2009 96 1 293300 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 23. Cuña Suárez, A, Tancredi, N, Pinheiro, CPC, Yoshida, MI. Thermal analysis of the combustion of charcoals from Eucalyptus dunnii obtained at different pyrolysis temperatures. J Therm Anal Calorim 2010 100 3 10511054 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 24. Núñez-Regueira, L, Rodríguez-Añón, JA, Proupín, J, Mouriño, B, Artiaga-Diaz, R. Energetic study of residual forest biomass using calorimetry and thermal analysis. J Therm Anal Calorim 2005 80:457464 .

    • Crossref
    • Search Google Scholar
    • Export Citation