View More View Less
  • 1 Sobolev Institute of Geology and Mineralogy, SB RAS, Pr. Ac. Koptyuga 3, Novosibirsk, Russia, 630090
  • | 2 Nikolaev Institute of Inorganic Chemistry, SB RAS, Pr. Ac. Lavrentieva 3, Novosibirsk, Russia, 630090
  • | 3 Novosibirsk State University, Ul. Pirogova 2, Novosibirsk, Russia, 630090 tanya@xray.nsu.ru
  • | 4 Institute of Archaeology and Ethnography, SB RAS, Pr. Ac. Lavrentieva 17, Novosibirsk, Russia, 630090 Liudmilamy@mail.ru
  • | 5 Institute of Solid State Chemistry and Mechanochemistry, SB RAS, Kutateladze St., 18, Novosibirsk, Russia, 630128
Restricted access

Abstract

The procedure for the visualization of thermogravimetric results for ancient ceramics is described and justified. Two main parameters for the analysis are dehydration and dehydroxylation, which are derived from the experiment as the values of mass loss at temperature interval from room temperature to 350 °C and from 350 to 600 °C. Three examples show how to use the mass-loss diagram for (1) the analysis of the material of a single pot; (2) comparison between different pots from the same archeological site, and (3) search for the source of clay for the manufacturing ancient ceramics.

  • 1. Roberts, JP Determination of the firing temperature of ancient ceramics by measurement of thermal expansion. Archaeometry 1963 6:2125 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 2. Tite, MS Determination of the firing temperature of ancient ceramics by measurement of thermal expansion: a reassessment. Archaeometry 1969 11:132143 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 3. Moropoulou, A, Bakolas, A, Bisbikou, K 1995 Thermal-analysis as a method of characterizing ancient ceramic technologies. Thermochim Acta 260:743753 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 4. Papadopoulou, DN, Lalia-Kantouri, M, Kantiranis, N, Stratis, JA 2006 Thermal and mineralogical contribution to the ancient ceramics and natural clays characterization. J Therm Anal Calorim 84:3945 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 5. Duminuco, P, Messiga, B, Riccardi, MP 1998 Firing process of natural clays. Some microtextures and related phase compositions. Thermochim Acta 321:185190 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 6. Ion, RM, Ion, ML, Fierascu, RC, Serban, S, Dumitriu, I, Radovici, C, Bauman, I, Cosulet, S, Niculescu, VIR 2010 Thermal analysis of Romanian ancient ceramics. J Therm Anal Calorim 102:393398 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7. Hein, A, Tsolakidou, A, Iliopoulos, I, Mommsen, H, Buxeda i Garrigos, J, Montana, G, Kilikoglou, V 2002 Standardisation of elemental analytical techniques applied to provenance studies of archaeological ceramics: an interlaboratory calibration study. Analyst 127:542553 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8. Hillier, S Accurate quantitative analysis of clay and other minerals in sandstones by XRD: comparison of a Rietveld and a reference intensity ratio (RIR) method and the importance of sample preparation. Clay Miner 2000 35:291302 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 9. Riccardi, MP, Messiga, B, Duminuco, P 1999 An approach to the dynamics of clay firing. Appl Clay Sci 15:393409 .

  • 10. Nagasawa, K, Ohkochi, N 1988 X-ray studies on dehydration and rehydration of expandable clay minerals. Thermochim Acta 135:285290 .

  • 11. Muller, F, Drits, V, Plancon, A, Robert, JL 2000 Structural transformation of 2:1 dioctahedral layer silicates during dehydroxilation–rehydroxylation reactions. Clay Clay Miner 48:572585 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 12. Shoval, S, Beck, P 2005 Thermo-FTIR spectroscopy analysis as a method of characterizing ancient ceramic technology. J Therm Anal Calorim 82:609616 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13. Drebushchak, VA, Mylnikova, LN, Molodin, VI 2007 Thermogravimetric investigation of ancient ceramics: metrological analysis of sampling. J Therm Anal Calorim 90:7379 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 14. Shoval, S, Beck, P, Kirsch, Y, Levy, P, Gaft, M, Yadin, E 1991 Rehydroxylation of clay minerals and hydration in ancient pottery from the ‘land of Geshur’. J Therm Anal 37:15791592 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15. Drebushchak, VA, Mylnikova, LN, Drebushchak, TN, Boldyrev, VV 2005 The investigation of ancient pottery: application of thermal analysis. J Therm Anal Calorim 82:617626 .

    • Crossref
    • Search Google Scholar
    • Export Citation

Manuscript Submission: HERE

  • Impact Factor (2019): 2.731
  • Scimago Journal Rank (2019): 0.415
  • SJR Hirsch-Index (2019): 87
  • SJR Quartile Score (2019): Q3 Condensed Matter Physics
  • SJR Quartile Score (2019): Q3 Physical and Theoretical Chemistry
  • Impact Factor (2018): 2.471
  • Scimago Journal Rank (2018): 0.634
  • SJR Hirsch-Index (2018): 78
  • SJR Quartile Score (2018): Q2 Condensed Matter Physics
  • SJR Quartile Score (2018): Q2 Physical and Theoretical Chemistry

For subscription options, please visit the website of Springer.

Journal of Thermal Analysis and Calorimetry
Language English
Size A4
Year of
Foundation
1969
Volumes
per Year
4
Issues
per Year
24
Founder Akadémiai Kiadó
Founder's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Publisher Akadémiai Kiadó
Springer Nature Switzerland AG
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
CH-6330 Cham, Switzerland Gewerbestrasse 11.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 1388-6150 (Print)
ISSN 1588-2926 (Online)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Apr 2021 1 0 0
May 2021 2 1 2
Jun 2021 0 0 0
Jul 2021 1 0 0
Aug 2021 3 0 0
Sep 2021 0 0 0
Oct 2021 0 0 0