View More View Less
  • 1 Materials Science Institute of Seville (CSIC-UNS), Americo Vespucio 49, 41092, Seville, Spain
Restricted access

Abstract

In this study, the decomposition behaviour of unaltered and altered dolomitic rock samples used in Cultural Heritage buildings was studied by simultaneous TG–DTA experiments at different atmospheres, X-ray diffraction in a high-temperature chamber, and evolved gas analysis. The components of dolomite rock samples and hydrated calcium oxalate formed during the alteration processes of the rocks were characterized, and the decomposition mechanisms of these components were determined. The TG–DTA experiments carried out at CO2 atmosphere were used to determine the carbonate compounds in the rock samples. The TG–DTA study characterized the presence of organic compounds formed during the biological degradation of the rock samples, possibly responsible of the hydrated calcium oxalate formation.

  • 1. Maniatis, Y, Herz, N, Basiakos, Y, eds. The study of marble and other stones used in antiquity. Los Angeles: J.G. Publications; 1995.

    • Search Google Scholar
    • Export Citation
  • 2. Iwafuchi, K, Watenabe, C, Otsuka, R. Thermal decomposition of ferromanganoan dolomite. Thermochim Acta. 1983;66:105125. .

  • 3. Barcina, LM, Espina, A, Suarez, M, Garcia, JR, Rodriguez, J. Characterization of monumental carbonate stones by thermal analysis (TG, DTG and DSC). Thermochim Acta. 1997;290:181189. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 4. McCauley, RA, Johnson, LA. Decrepitation and thermal decomposition of dolomite. Thermochim Acta. 1991;185:271282. .

  • 5. McIntosh, RM, Sharp, JH, Wilburn, FW. The thermal decomposition of dolomite. Thermochim Acta. 1990;165:281296. .

  • 6. Otsuka, R. Recent studies on the decomposition of the dolomite group by thermal analysis. Thermochim Acta. 1986;100:6980. .

  • 7. Ozao, R, Ochiai, M, Yamazaki, A, Otsuka, R. Thermal analysis of ground dolomites. Thermochim Acta. 1991;183:183198. .

  • 8. Stepkowska, ET, Perez-Rodriguez, JL, Sayagues, MJ, Martinez-Blanes, JM. Calcite, vaterite and aragonite forming on cement hydration from liquid and gaseous phase. J Therm Anal Calorim. 2003;73:247269. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 9. Shoval, S, Gaft, M, Beck, P, Krish, V. Thermal-behavior of limestone and monocrystalline calcite tempers during firing and their use in ancient vessels. J Therm Anal Calorim. 1993;40:263273. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10. Shoval, S. Mineralogical changes upon heating calcitic and dolomitic marl rocks. Thermochim Acta. 1988;135:243252. .

  • 11. Gunasekaran, S, Anbalagan, G. Spectroscopy study of phase transitions in dolomite natural. J Raman Spectrosc. 2007;38:846852. .

  • 12. Samtani, M, Dollimore, D, Alexander, K. Thermal decomposition of dolomite in an atmosphere of carbon dioxide, the effect of procedural variables in thermal analysis. J Therm Anal Calorim. 2001;65:93101. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13. Avila, I, Crnkovic, PM, Milioli, FE. Thermogravimetric study of the effect of temperature and atmosphere on sulfur dioxide absorption by limestone. Quim Nova. 2006;29:12441249.

    • Search Google Scholar
    • Export Citation
  • 14. Maitra, S, Chodhury, A, Das, HD, Pramanik, MJ. Effect of compaction on the kinetics of thermal decomposition of dolomite under non-isothermal condition. J Mater Sci. 2005;40:47494751. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15. Webb, TL, Krüger, JE. Carbonates Mackenzie, RC, eds. Differential thermal analysis. 1 New York: Academic Press; 1970.

  • 16. Perez-Rodriguez, JL, Duran, A, Sanchez-Jimenez, PE, Franquelo, ML, Perejon, A, Pascual-Cosp, J, Perez-Maqueda, LA. Study of the dehydroxylation-rehydroxylation of pyrophyllite. J Am Ceram Soc. 2010;93:23922398. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 17. Franco, F, Perez-Maqueda, LA, Perez-Rodriguez, JL. The influence of ultrasound on the thermal behaviour of a well ordered kaolinite. Thermochim Acta. 2003;404:7179. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 18. Perez-Maqueda, LA, Balek, V, Poyato, J, Pérez-Rodriguez, JL, Subrt, J, Bountsewa, IM, Malek, Z. Study of natural and ion exchanged vermiculite by emanation thermal analysis, TG, DTA and XRD. J Therm Anal Calorim. 2003;71:715726. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19. Perez-Maqueda, LA, Blanes, JM, Pascual, J, Perez-Rodriguez, JL. The influence of sonication on the thermal behaviour of muscovite and biotite. J Am Ceram Soc. 2004;24:27932801. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 20. Bradley, WF, Burst, JF, Graf, DL. Crystal chemistry and differential thermal effects of dolomite. Am Miner. 1953;38:207217.

  • 21. Maszalek, M. Applications of optical microscopy and scanning electron microscopy to the study of stone weathering: a Cracow case study. Int J Archit Herit. 2008;2:8392. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 22. Toniolo, L, Zerbi, CM, Bugini, R. Black layers on historical architecture. Environ Sci Pollut Res. 2009;16:218226. .

  • 23. Adorni, E, Venturelli, G. Mortars and stones of the Damascus Citadel (Syria). Int J Archit Herit. 2010;4:337350. .

  • 24. Garcia-Valles, M, Urzi, C, De Leo, F, Salomone, P, Vendrell-Sanz, M. Biological weathering and mineral deposits of the Belevi marble quarry (Ephesis, Turkey). Int Biodeterior Biodegrad. 2000;46:221227. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 25. Del Monte, M, Sabioni, C, Sappia, G. The origin of calcium oxalates on historical buildings, monuments and natural outcrops. Sci Total Environ. 1987;67:1739. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 26. Chen, J, Blume, HP, Beyer, L. Weathering of rocks induced by lichen colonization—a review. Catena. 2000;39:121146. .

  • 27. Lazzarini, L, Borrelli, E, Bouabdelli, M, Antonelli, F. Insight into the conservation problems of the stone building “Bab Agnaou”, a XII century monumental gate in Marrakech (Morocco). J Cult Herit. 2007;8:315322. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 28. Kolo, K, Claeys, Ph. In vitro formation of Ca-oxalates and the mineral glushinskite by fungal interaction with carbonate substrates and seawater. Biogeosciences. 2005;2:277293. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 29. Frost, RL, Weier, ML. Thermal treatment of weddellite–a Raman and infrared emission spectroscopic study. Thermochim Acta. 2003;406:221232. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 30. Campanella, L, Cardarelli, E, Curini, R, D’ascenzo, G, Tomasetti, M. Thermogravimetric analysis of human renal calculi sampled in 19th century patients: discussion on the basis of their alimentary customs. J Therm Anal Calorim. 1992;38:27072717. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 31. Carrasco, F. Kinetic-study of the thermal decomposition of monohydrate calcium oxalate by thermogravimetric analysis. Afinidad. 1991;48:1924.

    • Search Google Scholar
    • Export Citation
  • 32. Frost, RL, Weier, ML. Thermal treatment of whewellite: a thermal study and Raman spectroscopy study. Thermochim Acta. 2004;409:7985. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 33. Kohutova, A, Honcova, P, Podzemna, V, Bezdicka, P, Vecernikova, E, Louda, M, Seidel, J. Thermal analysis of kidney stones and their characterization. J Therm Anal Calorim. 2010;101:695699. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 34. Gurrrieri, S, Siracusa, G, Cali, R. Thermal decomposition of CaC2O4H2O—determination of kinetic parameters by DTG and DTA. J Therm Anal Calorim. 1974;6:293298. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 35. Mu, J, Perlmutter, DD. Thermal decomposition of carbonates, carboxylates, oxalates, acetates, formats and hydroxides. Thermochim Acta. 1981;44:207218. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 36. Lombardi, G, Santarelli, ML. Multi-instrumental analysis of asphalts of archaeological interest. J Therm Anal Calorim. 2009;96:541546. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 37. Budrugeac, P, Emandi, A. The use of thermal analysis methods for conservation state determination of historical and/or cultural objects manufactured from lime tree wood. J Therm Anal Calorim. 2010;101:881886. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 38. Ion, RM, Ion, ML, Fierascu, RC, Serban, S, Dumitriu, I, Radovici, C, Bauman, I, Cosulet, S, Niculescu, VIR. Thermal analysis of Romanian ancient ceramics. J Therm Anal Calorim. 2010;102:393398. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 39. Franquelo, ML, Robador, MD, Ramírez-Valle, V, Durán, A, Jiménez de Haro, MC, Pérez-Rodríguez, JL. Roman ceramics of hydraulic mortars used to build the Mithraeum House of Merida (Spain). J Therm Anal Calorim. 2008;92:331335. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 40. Odlyha, M, Wang, Q, Foster, GM, de Groot, J, Horton, M, Bozec, L. Thermal analysis of model and historic tapestries. J Therm Anal Calorim. 2005;82:627636. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 41. Moropoulou, A, Bakolas, A, Bisbikou, K. Investigation of the technology of historic mortars. J Cult Herit. 2000;1:4558. .

  • 42. Genestar, C, Pons, C, Mas, A. Analytical characterisation of ancient mortars from the archaeological Roman city of Pollentia (Balearic Islands, Spain). Anal Chim Acta. 2006;557:373379. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 43. Vágvölgy, V, Frost, RL, Hales, M, Locke, A, Kristof, J, Horváth, E. Controlled rate thermal analysis of hydromagnesite. J Therm Anal Calorim. 2008;92:893897. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 44. Beck, CW. Differential thermal analysis curves of carbonate minerals. Am Mineral. 1950;35:9851013.

  • 45. Duran, A, Perez-Maqueda, LA, Poyato, J, Perez-Rodriguez, JL. A thermal study approach to roman age wall paintings mortars. J Therm Anal Calorim. 2010;99:803809. .

    • Crossref
    • Search Google Scholar
    • Export Citation

Manuscript Submission: HERE

  • Impact Factor (2019): 2.731
  • Scimago Journal Rank (2019): 0.415
  • SJR Hirsch-Index (2019): 87
  • SJR Quartile Score (2019): Q3 Condensed Matter Physics
  • SJR Quartile Score (2019): Q3 Physical and Theoretical Chemistry
  • Impact Factor (2018): 2.471
  • Scimago Journal Rank (2018): 0.634
  • SJR Hirsch-Index (2018): 78
  • SJR Quartile Score (2018): Q2 Condensed Matter Physics
  • SJR Quartile Score (2018): Q2 Physical and Theoretical Chemistry

For subscription options, please visit the website of Springer.

Journal of Thermal Analysis and Calorimetry
Language English
Size A4
Year of
Foundation
1969
Volumes
per Year
4
Issues
per Year
24
Founder Akadémiai Kiadó
Founder's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Publisher Akadémiai Kiadó
Springer Nature Switzerland AG
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
CH-6330 Cham, Switzerland Gewerbestrasse 11.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 1388-6150 (Print)
ISSN 1588-2926 (Online)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
May 2021 0 0 0
Jun 2021 1 0 0
Jul 2021 1 0 0
Aug 2021 0 0 0
Sep 2021 1 0 0
Oct 2021 2 0 0
Nov 2021 0 0 0