Mullite–Zirconia–Zircon composites have proved to be suitable for high-temperature structural applications, with good mechanical and fracture properties and good thermal shock resistance. In this paper, the special dilatometric behavior of a series of Mullite–Zirconia–Zircon (3–40 vol.% ZrO2) composites is evaluated and compared with that of a pure Zircon material and explained in terms of the high Zirconia linear thermal expansion coefficient (α) and Zirconia martensitic transformation. Linear thermal expansion (α) up to 1273 K is studied and correlated with the phase composition of the composites; a linear correlation was found with the m-ZrO2 content evaluated with the Rietveld method. Zirconia (m-ZrO2) dispersed grains containing ceramics material showed a hysteresis in a reversible dilatometric curve (DC). The martensitic transformation temperatures could be evaluated and then compared with the endothermic and exothermic peaks temperatures obtained from the differential thermal analysis (DTA). Furthermore, the hysteresis area was correlated with m-ZrO2 content, where composites with less than 10 vol.% ZrO2 did not show this behavior, and from this content up to 40 vol.% of ZrO2 a linear increase of the hysteresis area was found.
1. Torrecillas, R, Moya, JS S De Aza Gros, H, Fantozzi, G. Microstructure and mechanical properties of mullite–zirconia reaction-sintered composites. Acta Metallurgica. 1993;41 6 1647–1652 .
2. Lathabai, S, Hay, DG, Wagner, F, Claussen, N. Reaction-bonded mullite/zirconia composites. J Am Ceram Soc 1996 79 1 248–256 .
3. Hamidouche, M, Bouaouadja, N, Osmani, H, Torrecillias, R, Fantozzi, G. Thermomechanical behavior of Mullite–Zirconia composite. J Eur Ceramic Soc 1996 16 4 441–445 .
4. Jang, B-K. Microstructure of nano SiC dispersed Al2O3–ZrO2 composites. Mater Chem Phys. 2005;93 2-3 337–341 .
5. Hirvonen, A, Nowak, R, Yamamoto, Y, Sekino, T, Niihara, K. Fabrication, structure, mechanical and thermal properties of zirconia-based ceramic nanocomposites. J Eur Ceramic Soc 2006 26 8 1497–1505 .
6. Sarkar, D, Adak, S, Mitra, NK. Preparation and characterization of an Al2O3–ZrO2 nanocomposite, Part I: Powder synthesis and transformation behavior during fracture. Compos Part A Appl Sci Manuf 2007 38 1 124–131 .
7. Yugeswaran, S, Selvarajan, V, Dhanasekaran, P, Lusvarghi, L. Transferred arc plasma processing of mullite–zirconia composite from natural bauxite and zircon sand. Vacuum 2008 83 2 353–359 .
8. Rendtorff, N, Garrido, L, Aglietti, E. Thermal shock behavior of dense Mullite–Zirconia composites obtained by two processing routes. Ceram Int 2008 34 8 2017–2024 .
9. Belhouchet, H, Hamidouche, M, Bouaouadja, N, Garnier, V, Fantozzi, G. Elaboration and characterization of mullite–zirconia composites from gibbsite, boehmite and zircon. Ceramics Silicaty 2009 53 3 205–210.
10. Ibarra Castro, MN, Almanza Robles, JM, Cortés Hernández, DA, Escobedo Bocardo, JC, Torres Torres, J. Development of mullite/zirconia composites from a mixture of aluminum dross and zircon. Ceram Int 2009 35 2 921–924 .
11. Mecif, A, Soro, J, Harabi, A, Bonnet, JP. Preparation of mullite- and zircon-based ceramics using kaolinite and zirconium oxide: a sintering study. J Am Ceram Soc 2010 93 5 1306–1312.
12. Chockalingam, S, Traver, HK. Microwave sintering of β-SiAlON-ZrO2 composites. Mater Des 2010 31 8 3641–3646 .
13. Tür, YK, Sünbül, AE, Yilmaz, H, Duran, C. Effect of mullite grains orientation on toughness of mullite/zirconia composites. Ceram Trans 2010 210:273–278.
14. Curran, DJ, Fleming, TJ, Towler, MR, Hampshire, S. Mechanical properties of hydroxyapatite–zirconia compacts sintered by two different sintering methods. J Mater Sci Mater Med 2010 21 4 1109–1120 .
15. Ma W , Wen L, Guan R, Sun X, Li X. Sintering densification, microstructure and transformation behavior of Al2O3/ZrO2(Y2O3) composites. 3rd International Conference on Spray Deposition and Melt Atomization (SDMA 2006) and the 6th International Conference on Spray Forming (ICSF VI). Mater Sci Eng A. 2008;477(1-2):100-106.
16. Sahnoune, F, Saheb, N, Chegaar, M, Goeuriot, P. Microstructure and sintering behavior of mullite–zirconia composites. Mater Sci Forum 2010 638–642:979–984 .
17. Calderon-Moreno, JM, Yoshimura, M. Al2O3–Y3AlO12(YAG)-ZrO2 ternary composite rapidly solidified from the eutectic melt. J Eur Ceram Soc 2005 25 8 Spec. Iss. 1365–1368 .
18. Hamidouche, M, Bouaouadja, N, Torrecillas, R, Fantozzi, G. Thermomechanical behavior of a Zircon–Mullite composite. Ceram Int 2007 33 4 655–662 .
19. Naglieri, V, Palmero, P, Montanaro, L. Preparation and characterization of alumina-doped powders for the design of multi-phasic nano-microcomposites. J Therm Anal Calorim 2009 97 1 231–237 .
20. Shevchenko, AV, Dudnik, EV, Ruban, AK, Redko, VP, Lopato, LM. Sintering of self-reinforced ceramics in the ZrO2–Y2O3–CeO2–Al2O3 system. Powder Metall Metal Ceram 2010 49 1-2 42–49 .
21. Malek, O, Vleugels, J, Perez, Y P De Baets Liu, J S Van den Berghe Lauwers, B. Electrical discharge machining of ZrO2 toughened WC composites. Mater Chem Phys. 2010;123 1 114–120 .
22. Sarkar, SK, Lee, BT. Evaluation and comparison of the microstructure and mechanical properties of fibrous Al2O3-(m-ZrO2)/t-ZrO2 composites after multiple extrusion steps. Ceram Int 2010 36 6 1971–1976 .
23. Pan, C, Zhang, L, Zhao, Z, Qu, Z, Yang, Q, Huang, X. Changes in microstructures and properties of Al2O3/ZrO2(Y2O3) with different content of ZrO2. Adv Mater Res 2010 105–106 1 1–4 .
24. Rendtorff, N, Garrido, L, Aglietti, E. Mullite–Zirconia–Zircon composites: properties and thermal shock resistance. Ceram Int 2009 35 2 779–786 .
25. Rendtorff, N, Garrido, L, Aglietti, E. Zirconia toughening of Mullite–Zirconia–Zircon composites obtained by direct sintering. Ceram Int 2010 36 2 781–788 .
26. Zender, H, Leistner, H, Searle, H. ZrO2 Materials for applications in the Ceramic Industry. Interceram 1990 39 6 33–36.
27. Kelly, P, Rose, LF. The martensitic transformation in ceramics-its role in transformation toughening. Prog Mater Sci 2002 47:463–557 .
28. Wang, C, Zinkevich, M, Aldinger, F. The Zirconia–Hafnia system: DTA measurements and thermodynamic calculations. J Am Ceram Soc 2006 89 12 3751–3758 .
29. Luo X , Zhou W, Ushakov SV, Navrotsky A, Demkov AA. Monoclinic to tetragonal transformations in hafnia and zirconia: a combined calorimetric and density functional study. Phys Rev B Condens Matter Mater Phys. 2009; 80 (13), 134119.
30. Wang, C, Zinkevich, M, Aldinger, F. On the thermodynamic modeling of the Zr–O system. Calphad 2004 28 3 281–292 .
31. Chevalier, J, Gremillard, L, Virkar, AV, Clarke, DR. The tetragonal–monoclinic transformation in zirconia: lessons learned and future trends. J Am Ceram Soc 2009 92 9 1901–1920 .
32. Moriya, Y, Navrotsky, A. High-temperature calorimetry of zirconia: heat capacity and thermodynamics of the monoclinic–tetragonal phase transition. J Chem Thermodyn 2006 38 3 211–223 .
33. Skovgaard, M, Ahniyaz, A, S⊘rensen, BF, Almdal, K A van Lelieveld Effect of microscale shear stresses on the martensitic phase transformation of nanocrystalline tetragonal zirconia powders. J Eur Ceram Soc 2010 30:2749–2755 .
34. Ownby, PD, Burt, DD, Stewart, DV. Experimental study of the thermal expansion of yttria stabilized Zirconia ceramics. Thermochim Acta 1991 190 1 39–42 .
35. Kingery, WD. Factors affecting thermal stress resistance of ceramic materials. J Am Ceram Soc. 1955;38 1 3–15 .
36. Hasselman, DPH. Elastic energy and surface energy as design criteria of thermal shock. J Am Ceram Soc. 1963;46 11 535–540 .
37. Hasselman, DPH. Unified theory of thermal shock fracture initiation and crack propagation in brittle ceramics. J Am Ceram Soc. 1969;52:600–604 .
38. Hasselman, DPH. Thermal stress resistance parameters of brittle refractory ceramics: a compendium. Am Ceram Soc Bull. 1970;49 12 1033–1037.
39. Miyazaki, H. The effect of TiO2 additives on the structural stability and thermal properties of yttria fully-stabilized zirconia. J Therm Anal Calorim. 2009;98 2 343–346 .
40. Szirtes, L, Megyeri, J, Kuzmann, E. Thermal behaviour of transition- and tetravalent-metal oxides and phosphorous oxide composites. J Therm Anal Calorim 2008 92 2 649–653 .
41. Kyaw, T, Okamoto, Y, Hayashi, K. Microstructures and mechanical properties of Mullite-(yttria, magnesia- and ceria-stabilized) Zirconia composites. J Mater Sci 1997 32 20 5497–5503 .
42. Ruh, R, Mazdiyasni, KS, Mendiratta, M. Mechanical and microstructural characterization of mullite and mullite-SiC-whisker and ZrO2-toughened-mullite—SiC-whisker composites. J Am Ceram Soc 1988 71 6 503–512 .