Authors:
N. M. Rendtorff Centro de Tecnología de Recursos Minerales y Cerámica (CETMIC): (CIC-CONICET-CCT La Plata), Camino Centenario y 506, C.C.49, M. B. Gonnet, B1897ZCA, Buenos Aires, Argentina
Facultad de Ciencias Exactas, Universidad Nacional de La Plata, UNLP, Buenos Aires, Argentina
CIC-PBA, Buenos Aires, Argentina

Search for other papers by N. M. Rendtorff in
Current site
Google Scholar
PubMed
Close
,
L. B. Garrido Centro de Tecnología de Recursos Minerales y Cerámica (CETMIC): (CIC-CONICET-CCT La Plata), Camino Centenario y 506, C.C.49, M. B. Gonnet, B1897ZCA, Buenos Aires, Argentina
Facultad de Ciencias Exactas, Universidad Nacional de La Plata, UNLP, Buenos Aires, Argentina

Search for other papers by L. B. Garrido in
Current site
Google Scholar
PubMed
Close
, and
E. F. Aglietti Centro de Tecnología de Recursos Minerales y Cerámica (CETMIC): (CIC-CONICET-CCT La Plata), Camino Centenario y 506, C.C.49, M. B. Gonnet, B1897ZCA, Buenos Aires, Argentina
Facultad de Ciencias Exactas, Universidad Nacional de La Plata, UNLP, Buenos Aires, Argentina
CONICET, Buenos Aires, Argentina

Search for other papers by E. F. Aglietti in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Mullite–Zirconia–Zircon composites have proved to be suitable for high-temperature structural applications, with good mechanical and fracture properties and good thermal shock resistance. In this paper, the special dilatometric behavior of a series of Mullite–Zirconia–Zircon (3–40 vol.% ZrO2) composites is evaluated and compared with that of a pure Zircon material and explained in terms of the high Zirconia linear thermal expansion coefficient (α) and Zirconia martensitic transformation. Linear thermal expansion (α) up to 1273 K is studied and correlated with the phase composition of the composites; a linear correlation was found with the m-ZrO2 content evaluated with the Rietveld method. Zirconia (m-ZrO2) dispersed grains containing ceramics material showed a hysteresis in a reversible dilatometric curve (DC). The martensitic transformation temperatures could be evaluated and then compared with the endothermic and exothermic peaks temperatures obtained from the differential thermal analysis (DTA). Furthermore, the hysteresis area was correlated with m-ZrO2 content, where composites with less than 10 vol.% ZrO2 did not show this behavior, and from this content up to 40 vol.% of ZrO2 a linear increase of the hysteresis area was found.

  • 1. Torrecillas, R, Moya, JS S De Aza Gros, H, Fantozzi, G. Microstructure and mechanical properties of mullite–zirconia reaction-sintered composites. Acta Metallurgica. 1993;41 6 16471652 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 2. Lathabai, S, Hay, DG, Wagner, F, Claussen, N. Reaction-bonded mullite/zirconia composites. J Am Ceram Soc 1996 79 1 248256 .

  • 3. Hamidouche, M, Bouaouadja, N, Osmani, H, Torrecillias, R, Fantozzi, G. Thermomechanical behavior of Mullite–Zirconia composite. J Eur Ceramic Soc 1996 16 4 441445 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 4. Jang, B-K. Microstructure of nano SiC dispersed Al2O3–ZrO2 composites. Mater Chem Phys. 2005;93 2-3 337341 .

  • 5. Hirvonen, A, Nowak, R, Yamamoto, Y, Sekino, T, Niihara, K. Fabrication, structure, mechanical and thermal properties of zirconia-based ceramic nanocomposites. J Eur Ceramic Soc 2006 26 8 14971505 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 6. Sarkar, D, Adak, S, Mitra, NK. Preparation and characterization of an Al2O3–ZrO2 nanocomposite, Part I: Powder synthesis and transformation behavior during fracture. Compos Part A Appl Sci Manuf 2007 38 1 124131 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7. Yugeswaran, S, Selvarajan, V, Dhanasekaran, P, Lusvarghi, L. Transferred arc plasma processing of mullite–zirconia composite from natural bauxite and zircon sand. Vacuum 2008 83 2 353359 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8. Rendtorff, N, Garrido, L, Aglietti, E. Thermal shock behavior of dense Mullite–Zirconia composites obtained by two processing routes. Ceram Int 2008 34 8 20172024 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 9. Belhouchet, H, Hamidouche, M, Bouaouadja, N, Garnier, V, Fantozzi, G. Elaboration and characterization of mullite–zirconia composites from gibbsite, boehmite and zircon. Ceramics Silicaty 2009 53 3 205210.

    • Search Google Scholar
    • Export Citation
  • 10. Ibarra Castro, MN, Almanza Robles, JM, Cortés Hernández, DA, Escobedo Bocardo, JC, Torres Torres, J. Development of mullite/zirconia composites from a mixture of aluminum dross and zircon. Ceram Int 2009 35 2 921924 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11. Mecif, A, Soro, J, Harabi, A, Bonnet, JP. Preparation of mullite- and zircon-based ceramics using kaolinite and zirconium oxide: a sintering study. J Am Ceram Soc 2010 93 5 13061312.

    • Search Google Scholar
    • Export Citation
  • 12. Chockalingam, S, Traver, HK. Microwave sintering of β-SiAlON-ZrO2 composites. Mater Des 2010 31 8 36413646 .

  • 13. Tür, YK, Sünbül, AE, Yilmaz, H, Duran, C. Effect of mullite grains orientation on toughness of mullite/zirconia composites. Ceram Trans 2010 210:273278.

    • Search Google Scholar
    • Export Citation
  • 14. Curran, DJ, Fleming, TJ, Towler, MR, Hampshire, S. Mechanical properties of hydroxyapatite–zirconia compacts sintered by two different sintering methods. J Mater Sci Mater Med 2010 21 4 11091120 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15. Ma W , Wen L, Guan R, Sun X, Li X. Sintering densification, microstructure and transformation behavior of Al2O3/ZrO2(Y2O3) composites. 3rd International Conference on Spray Deposition and Melt Atomization (SDMA 2006) and the 6th International Conference on Spray Forming (ICSF VI). Mater Sci Eng A. 2008;477(1-2):100-106.

    • Search Google Scholar
    • Export Citation
  • 16. Sahnoune, F, Saheb, N, Chegaar, M, Goeuriot, P. Microstructure and sintering behavior of mullite–zirconia composites. Mater Sci Forum 2010 638–642:979984 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 17. Calderon-Moreno, JM, Yoshimura, M. Al2O3–Y3AlO12(YAG)-ZrO2 ternary composite rapidly solidified from the eutectic melt. J Eur Ceram Soc 2005 25 8 Spec. Iss. 13651368 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 18. Hamidouche, M, Bouaouadja, N, Torrecillas, R, Fantozzi, G. Thermomechanical behavior of a Zircon–Mullite composite. Ceram Int 2007 33 4 655662 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19. Naglieri, V, Palmero, P, Montanaro, L. Preparation and characterization of alumina-doped powders for the design of multi-phasic nano-microcomposites. J Therm Anal Calorim 2009 97 1 231237 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 20. Shevchenko, AV, Dudnik, EV, Ruban, AK, Redko, VP, Lopato, LM. Sintering of self-reinforced ceramics in the ZrO2–Y2O3–CeO2–Al2O3 system. Powder Metall Metal Ceram 2010 49 1-2 4249 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 21. Malek, O, Vleugels, J, Perez, Y P De Baets Liu, J S Van den Berghe Lauwers, B. Electrical discharge machining of ZrO2 toughened WC composites. Mater Chem Phys. 2010;123 1 114120 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 22. Sarkar, SK, Lee, BT. Evaluation and comparison of the microstructure and mechanical properties of fibrous Al2O3-(m-ZrO2)/t-ZrO2 composites after multiple extrusion steps. Ceram Int 2010 36 6 19711976 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 23. Pan, C, Zhang, L, Zhao, Z, Qu, Z, Yang, Q, Huang, X. Changes in microstructures and properties of Al2O3/ZrO2(Y2O3) with different content of ZrO2. Adv Mater Res 2010 105–106 1 14 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 24. Rendtorff, N, Garrido, L, Aglietti, E. Mullite–Zirconia–Zircon composites: properties and thermal shock resistance. Ceram Int 2009 35 2 779786 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 25. Rendtorff, N, Garrido, L, Aglietti, E. Zirconia toughening of Mullite–Zirconia–Zircon composites obtained by direct sintering. Ceram Int 2010 36 2 781788 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 26. Zender, H, Leistner, H, Searle, H. ZrO2 Materials for applications in the Ceramic Industry. Interceram 1990 39 6 3336.

  • 27. Kelly, P, Rose, LF. The martensitic transformation in ceramics-its role in transformation toughening. Prog Mater Sci 2002 47:463557 .

  • 28. Wang, C, Zinkevich, M, Aldinger, F. The Zirconia–Hafnia system: DTA measurements and thermodynamic calculations. J Am Ceram Soc 2006 89 12 37513758 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 29. Luo X , Zhou W, Ushakov SV, Navrotsky A, Demkov AA. Monoclinic to tetragonal transformations in hafnia and zirconia: a combined calorimetric and density functional study. Phys Rev B Condens Matter Mater Phys. 2009; 80 (13), 134119.

    • Search Google Scholar
    • Export Citation
  • 30. Wang, C, Zinkevich, M, Aldinger, F. On the thermodynamic modeling of the Zr–O system. Calphad 2004 28 3 281292 .

  • 31. Chevalier, J, Gremillard, L, Virkar, AV, Clarke, DR. The tetragonal–monoclinic transformation in zirconia: lessons learned and future trends. J Am Ceram Soc 2009 92 9 19011920 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 32. Moriya, Y, Navrotsky, A. High-temperature calorimetry of zirconia: heat capacity and thermodynamics of the monoclinic–tetragonal phase transition. J Chem Thermodyn 2006 38 3 211223 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 33. Skovgaard, M, Ahniyaz, A, S⊘rensen, BF, Almdal, K A van Lelieveld Effect of microscale shear stresses on the martensitic phase transformation of nanocrystalline tetragonal zirconia powders. J Eur Ceram Soc 2010 30:27492755 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 34. Ownby, PD, Burt, DD, Stewart, DV. Experimental study of the thermal expansion of yttria stabilized Zirconia ceramics. Thermochim Acta 1991 190 1 3942 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 35. Kingery, WD. Factors affecting thermal stress resistance of ceramic materials. J Am Ceram Soc. 1955;38 1 315 .

  • 36. Hasselman, DPH. Elastic energy and surface energy as design criteria of thermal shock. J Am Ceram Soc. 1963;46 11 535540 .

  • 37. Hasselman, DPH. Unified theory of thermal shock fracture initiation and crack propagation in brittle ceramics. J Am Ceram Soc. 1969;52:600604 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 38. Hasselman, DPH. Thermal stress resistance parameters of brittle refractory ceramics: a compendium. Am Ceram Soc Bull. 1970;49 12 10331037.

    • Search Google Scholar
    • Export Citation
  • 39. Miyazaki, H. The effect of TiO2 additives on the structural stability and thermal properties of yttria fully-stabilized zirconia. J Therm Anal Calorim. 2009;98 2 343346 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 40. Szirtes, L, Megyeri, J, Kuzmann, E. Thermal behaviour of transition- and tetravalent-metal oxides and phosphorous oxide composites. J Therm Anal Calorim 2008 92 2 649653 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 41. Kyaw, T, Okamoto, Y, Hayashi, K. Microstructures and mechanical properties of Mullite-(yttria, magnesia- and ceria-stabilized) Zirconia composites. J Mater Sci 1997 32 20 54975503 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 42. Ruh, R, Mazdiyasni, KS, Mendiratta, M. Mechanical and microstructural characterization of mullite and mullite-SiC-whisker and ZrO2-toughened-mullite—SiC-whisker composites. J Am Ceram Soc 1988 71 6 503512 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Collapse
  • Expand

To see the editorial board, please visit the website of Springer Nature.

Manuscript Submission: HERE

For subscription options, please visit the website of Springer Nature.

Journal of Thermal Analysis and Calorimetry
Language English
Size A4
Year of
Foundation
1969
Volumes
per Year
1
Issues
per Year
24
Founder Akadémiai Kiadó
Founder's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Publisher Akadémiai Kiadó
Springer Nature Switzerland AG
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
CH-6330 Cham, Switzerland Gewerbestrasse 11.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 1388-6150 (Print)
ISSN 1588-2926 (Online)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Mar 2024 21 0 0
Apr 2024 12 2 0
May 2024 3 0 0
Jun 2024 12 0 0
Jul 2024 44 0 0
Aug 2024 39 0 0
Sep 2024 2 0 0