View More View Less
  • 1 Physics Department, University of Guelma Algeria and LM2S Laboratory, Annaba, Algeria
  • | 2 Physics Department, University of Annaba and LM2S Laboratory, Annaba, Algeria
  • | 3 Institut Jean Lamour, Ecole des Mines de Nancy, Parc de Saurupt, CS 14 234, 54042, Nancy cedex, France
Restricted access

Abstract

Kinetics of β″ and β′ precipitations in an AlSiMg have been studied under non-isothermal conditions using differential scanning calorimetry (DSC) technique. The variation of the activation energy as a function of transformed fraction is determined using two isoconversional methods of Kissinger–Akahira–Sunose (KAS) and Friedman. The results obtained using the two methods show a change in the activation energy for both metastable phases precipitations as a function of transformed fraction. The results obtained from KAS method as compared with those obtained from Friedman method, show some major disagreements between the two methods. The growth exponent, determined by Ozawa method, decreases as a function of temperature for both phases.

  • 1. Kempen, ATW, Sommer, F, Mittemeijer, EJ. Determination and interpretation of isothermal and non-isothermal transformation kinetics; the effective activation energies in terms of nucleation and growth. J Mater Sci 2002 37:13211332 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 2. 1980 Brown, ME, Dollimore, D, Galwey, AK Comprehensive chemical kinetics H Bamford CFH Tipper eds. Reaction in the solid state 22 Elsevier Amsterdam 41113 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 3. Šesták, J Thermophysical properties of solids, their measurements and theoretical thermal analysis 1984 Elsevier Amsterdam.

  • 4. Galwey, AK, Brown, ME Thermal decomposition of ionic solids 1999 Elsevier Amsterdam.

  • 5. Friedman, HL. Kinetics of thermal degradation of char-forming plastics from thermogravimetry. Application to a phenolic plastic. J Polym Sci C. 1964;6:183195.

    • Search Google Scholar
    • Export Citation
  • 6. Coats, AW, Redfern, JP. Kinetic parameters from thermogravimetric data. Nature 1964 201:6869 .

  • 7. Kissinger, HE. Reaction kinetics in differential thermal analysis. Anal Chem. 1957;29:17021706 .

  • 8. Akahira, T, Sunose, T. Trans. Joint Convention of Four Electrical Institutes, Paper No. 246, 1969 Research report. Chiba Institute of Technology. Sci Technol 1971 16:2231.

    • Search Google Scholar
    • Export Citation
  • 9. Mittemeijer, EJ. Analysis of the kinetics of phase transformations. J Mater Sci. 1992;27:39773987 .

  • 10. Vyazovkin, S. Modification of the integral isoconversional method to account for variation in the activation energy. J Comput Chem. 2001;22:178183 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11. Cai, J, Chen, S. A new iterative linear integral isoconversional method for the determination of the activation energy varying with the conversion degree. J Comput Chem 2009 30:19861991 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 12. Ortega, A. A simple and precise linear integral method for isoconversional data. Thermochim Acta. 2008;474:8186 .

  • 13. Wahi, RP M von Heimendahl On the occurence oft he metastable phase β″ in Al–Si–Mg alloy. Phys Stat Sol A 1974 24:607612 .

  • 14. Burger, GB, Gupta, AK, Jeffrey, PW, Lloyd, DJ. Microstructural control of aluminum sheet used on automotive application. Mater Charact 1995 35:2339 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15. Andersen, SJ, Zandbergen, HW, Jansen, J, Træholt, C, Tundal, U, Reiso, O. The crystal structure of the β″ phase in Al–Mg–Si alloys. Acta Mater 1998 46:3283 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 16. Miao, WF, Laughlin, DE. Precipitation hardening in aluminum alloy 6022. Scripta Mater 1999 40:873878 .

  • 17. Dutta, I, Allen, SM. A calorimetric study of precipitation in commercial aluminium alloy 6061. J Mater Sci Lett 1991 10:323326 .

  • 18. Gupta, AK, Lloyd, DJ, Court, SA. Precipitation hardening in Al–Mg–Si alloys with and without excess Si. Mater Sci Eng A 2001 316:1117 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19. Wang, X, Esmaeili, S, Lloyd, DJ. The sequence of precipitation in the Al–Mg–Si–Cu alloy AA6111. Metall Mater Trans A 2006 37A:26912699 .

  • 20. Jacobs, MH. The structure of the metastable precipitates formed during ageing of an Al–Mg–SI alloy. Philos Mag. 1972;26:113 .

  • 21. Edwards, GA, Stiller, K, Dunlop, GL, Couper, MJ. The precipitation sequence in Al–Mg–Si alloys. Acta Mater 1998 46:38933904 .

  • 22. Matsuda, K, Naoi, T, Fujii, K, Uetani, Y, Sato, T, Kamio, A, Ikeno, S. Crystal structure of the β″ phase in an Al-1.0mass%Mg2Si-0.4mass%Si alloy. Mater Sci Eng A 1999 262:232237 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 23. Polli, H, Pontes, LAM, Araujo, AS, Barros Joana, MF VJ Fernandes Jr Degradation behavior and kinetic study of ABS polymer. J Therm Anal Calorim 2009 95:131134 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 24. Chrissafis, K. Kinetics of thermal degradation of polymers. Complementary use of isoconversional and model-fitting methods. J Therm Anal Calorim. 2009;95:273283 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 25. Kumari, K, Raina, KK, Kundu, PP. DSC studies on the curing of chitosan-alanine using glutaraldehyde as crosslinker. J Therm Anal Calorim 2009 98:469476 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 26. Pǎcurariu, C, Lazǎu, RI, Lazǎu, I, Ianos, R, Tita, B. Non-isothermal crystallization kinetics of some basaltic glass-ceramics containing CaF2 as nucleation agent. J Therm Anal Calorim 2009 97:50713 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 27. Araújo, EB, Idalgo, E. Studies on crystallization kinetics of tellurite 20Li2O–80TeO2 glass. J Therm Anal Calorim 2009 95:3742 .

  • 28. Rotaru, A, Moantǎ, A, Rotaru, P, Segal, E. Thermal decomposition kinetics of some aromatic azomonoethers. Part III. Non-isothermal study of 4-[(4-chlorobenzyl)oxy]-4′-chloroazobenzene in dynamic air atmosphere. J Therm Anal Calorim 2009 95:161166 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 29. López, M, Blanco, M, Vazquez, A, Ramos, JA, Arbelaiz, A, Gabilondo, N, Echeverría, JM, Mondragon, I. Isoconversional kinetic analysis of resol-clay nanocomposites. J Therm Anal Calorim 2009 96:567573 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 30. Boonchom, B, Danvirutai, C, Thongkam, M. Non-isothermal decomposition kinetics of synthetic serrabrancaite (MnPO4·H2O) precursor in N2 atmosphere. J Therm Anal Calorim 2010 99:357362 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 31. Tsao, CS, Chen, CY, Jeng, US, Kuo, TY. Precipitation kinetics and transformation of metastable phases in Al–Mg–Si alloys. Acta Mater 2006 54:46214631 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 32. Moreau, G, Cornet, JA, Calais, D. Accélération de la diffusion chimique sous irradiation dans le système Al-Mg. J Nucl Mater 1971 38:197202 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 33. Berger, D, Cyrener, E. Diffusion of foreign elements in aluminum mixed crystals III. Microprobe study of silicon diffusion in aluminum. Neue Huette 1973 18:356361.

    • Search Google Scholar
    • Export Citation
  • 34. Fujikawa, SI, Hirano, K, Fukushima, Y. Diffusion of silicon in aluminium. Metall Mater Trans A 1978 9:18111815 .

  • 35. Hirano, KI. Diffusion in aluminum. J Jpn Inst Light Met. 1979;29:249262.

  • 36. Nishizawa T . Thermodynamics of microstructures. ASM Int. 2008.

  • 37. Su, T, Jiange, H, Gong, H. Thermal decomposition and dehydration kinetic studies on hydrated Co(II) methanesulfonate. Thermochim Acta 2005 435:15 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 38. Joraid, AA. Estimating the activation energy for the non-isothermal crystallization of an amorphous Sb9.1Te20.1Se70.8 alloy. Thermochim Acta. 2007;456:16 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 39. Starink, MJ. The determination of activation energy from linear heating rate experiments: a comparison of the accuracy of isoconversion methods. Thermochim Acta. 2003;404:163176 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 40. Marioara, CD, Andersen, SJ, Jansen, J, Zandbergen, HW. Atomic model for GP-zones in a 6082 Al–Mg–Si System. Acta Mater 2001 49:321328 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 41. Murayama, M, Hono, K. Pre-precipitation clusters and precipitation processes in Al–Mg–Si alloys. Acta Mater 1999 47:15371548 .

  • 42. Ravi, C, Wolverton, C. First-principles study of crystal structure and stability of Al–Mg–Si–(Cu) precipitates. Acta Mater 2004 52:42134227 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 43. De Gueser F . Interprétation et traitement des données de sonde atomique tomographique: application à la precipitation dans les Al-Mg-Si. Thesis, Rouen University U.F.R. de Sciences et Techniques, France; 2005.

    • Search Google Scholar
    • Export Citation
  • 44. MA van Huis 2006 Chen, JH, Zandbergen, HW, Sluiter, MHF. Phase stability and structural relations of nanometer-sized, matrix-embedded precipitate phase in Al–Mg–Si alloys in the late stage of evolution. Acta Mater 54:29452955 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 45. Starink, MJ, Zahra, AM. β′ and β precipitation in an Al–Mg alloy studied by DSC and TEM. Acta Mater 1998 46:33813397 .

  • 46. Ozawa, T. Kinetics of non-isothermal crystallization. Polymer. 1971;12:150158 .

  • 47. Liu, F, Sommer, F, Mittemeijer, EJ. Analysis of the kinetics of phase transformations; roles of nucleation index and temperature dependent site saturation, and recipes for the extraction of kinetic parameters. J Mater Sci 2007 42:573587 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 48. Christian, JW The theory of transformation in metals and alloys, 2nd edn. Part I, chapt. 12 1975 Pergamon Press Oxford.

  • 49. Weatherly, GC, Nicholson, RB. An electron microscope investigation of the interfacial structure of semi-coherent precipitates. Philos Mag 1968 17:801831 .

    • Crossref
    • Search Google Scholar
    • Export Citation

Manuscript Submission: HERE

  • Impact Factor (2019): 2.731
  • Scimago Journal Rank (2019): 0.415
  • SJR Hirsch-Index (2019): 87
  • SJR Quartile Score (2019): Q3 Condensed Matter Physics
  • SJR Quartile Score (2019): Q3 Physical and Theoretical Chemistry
  • Impact Factor (2018): 2.471
  • Scimago Journal Rank (2018): 0.634
  • SJR Hirsch-Index (2018): 78
  • SJR Quartile Score (2018): Q2 Condensed Matter Physics
  • SJR Quartile Score (2018): Q2 Physical and Theoretical Chemistry

For subscription options, please visit the website of Springer.

Journal of Thermal Analysis and Calorimetry
Language English
Size A4
Year of
Foundation
1969
Volumes
per Year
4
Issues
per Year
24
Founder Akadémiai Kiadó
Founder's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Publisher Akadémiai Kiadó
Springer Nature Switzerland AG
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
CH-6330 Cham, Switzerland Gewerbestrasse 11.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 1388-6150 (Print)
ISSN 1588-2926 (Online)