View More View Less
  • 1 Faculty of Chemistry, University of Mazandaran, P.O. Box 47416-95447, Babolsar, Iran
Restricted access

Abstract

The lactose/KClO3 is a widely used pyrotechnic mixture to vaporize organic materials, such as smoke dyes. However, because of low ignition temperature of this mixture, serious precaution should be taken into account to prevent its accidental self-ignition. In order to find a safe and efficient alternative of this conventional mixture, KClO3 has been replaced by common oxidizing agents including KMnO4, KNO3, KClO4, Ba(NO3)2, PbO2 and NH4ClO4. TG and DTA analysis have been used to obtain thermal characteristic of the mixtures. Based on ignition temperature of the pyrotechnic mixtures we can divide them into four categories as follows: (1) the mixture igniting at low temperature, i.e., at about 200 °C. (2) Moderate temperature igniting mixture, in which ignition occurs at 300–400 °C. (3) High temperature igniting mixture with ignition temperature higher than 400 °C .(4) Not igniting mixtures. Also, the apparent activation energy (E), ΔG#, ΔH#, ΔS# and critical ignition temperature (Tb) of the ignition processes of low and moderate temperature igniting mixtures were obtained from the DSC experiments. Finally, among the investigated mixtures, lactose/KNO3 can be considered as a safe and efficient pyrotechnic composition for vaporization of organic materials, such as smoke dyes, due to its moderate safe ignition temperature.

  • 1. Berger, B. Parameters influencing the pyrotechnic reaction. Propellants Explos Pyrotech. 2005;30:2735 .

  • 2. Brown, ME. Some thermal studies on pyrotechnic compositions. Therm Anal Calorim. 2001;65:323334 .

  • 3. Qian, XM, Wang, Y, Feng, CG. Investigation of thermal decomposition of KClO3/CuO/S/Mg-Al/C6Cl6 system by accelerating rate calorimeter. Acta Phys-Chim Sin 2001 17:7073.

    • Search Google Scholar
    • Export Citation
  • 4. Hemmila, M, Hihkio, M, Linnainmaa, K. Evaluation of the acute toxicity and genotoxicity of orange, red, violet and yellow pyrotechnic smokes in vitro. Propellant Explos Pyrot 2007 32:415422 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 5. Fathollahi, M, Pourmortazavi, SM, Hosseini, SG. The effect of the particle size of potassium chlorate in pyrotechnic compositions. Combust Flame 2004 138:304306 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 6. Hosseini, SG, Pourmortazavi, SM, Hajimirsadeghi, SS. Thermal decomposition of pyrotechnic mixtures containing sucrose with either potassium chlorate or potassium perchlorate. Combust Flame 2005 14:322326 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7. Ellern, H Military and civilian pyrotechnic 1968 Chemical Publishing Company Inc. New York.

  • 8. McLain, JH Pyrotechnics from the viewpoint of solid state chemistry 1980 The Franklin Institute Press Philadelphia.

  • 9. Akhavan, J The chemistry of explosives 2004 2 The Royal Society of Chemistry London.

  • 10. Eslami, A, Hosseini, SG, Pourmortazavi, SM. Thermoanalytical investigation on some boron-fuelled binary pyrotechnic systems. Fuel 2008 87:33393343 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11. Roduit, B, Borgeat, C, Berger, B, Folly, P, Andres, H, Schädeli, U, Vogelsanger, B. UP-scaling of DSC DATA of high energetic materials, simulation of cook-off experiments. J Therm Anal Calorim 2006 85:195202 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 12. Berger, B, Brammer, AJ, Charsley, EL, Rooney, JJ, Warrington, SB. Thermal analysis studies on the boron–potassium perchlorate–nitrocellulose pyrotechnic system. J Therm Anal Calorim 1997 49:13271355 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13. Gunawan, R, Zhang, D. Thermal stability and kinetics of decomposition of ammonium nitrate in the presence of pyrite. J Hazard Mater 2009 165:751758 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 14. 2003 Charsley, EL, Laye, PG, Brown, ME Handbook of thermal analysis and calorimetry: pyrotechnics 1 Elsevier Amsterdam 777815.

  • 15. Pineda, EAG, Ferrarezi, ADM, Ferrarezi, JG, Hechenleitner, AAW. Thermal decomposition of enalapril maleate studied by dynamic isoconversional method. J Therm Anal Calorim 2005 79:259262 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 16. Ramos, LA, Cavalheriro, ETG, Chierice, GO. Preparation, characterization and thermal decomposition of ammonium salts of dithiocarbamic acids. J Therm Anal Calorim 2005 79:349353 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 17. Brown, SD, Charsley, EL, Goodall, SJ, Laye, PG, Rooney, JJ, Griffiths, TT. Studies on the ageing of a magnesium–potassium nitrate pyrotechnic composition using isothermal heat flow calorimetry and thermal analysis techniques. Thermochim Acta 2003 401:5361 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 18. Scans, FS. Thermal analysis of pyrotechnic compositions containing potassium chlorate and lactose. Combust Flame. 1974;23:363371 .

  • 19. Markowitz, MM, Boryta, DA. The differential thermal analysis of perchlorate. J Phys Chem 1964 68:22822289 .

  • 20. Pourmortazavi, SM, Hajimirsadeghi, SS, Hosseini, SG. Characterization of the aluminum/potassium chlorate mixtures by simultaneous TG-DTA. J Therm Anal Calorim 2006 84:557561 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 21. Wendlandt, WW Thermal methods of analysis 1974 2 Wiley New York.

  • 22. Koch, EC, Clement, D. Special materials in pyrotechnics: VI. Silicon—an old fuel with new perspectives. Propellants Explos Pyrotech 2007 32:205212 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 23. Hosseini, SG, Eslami, A. Thermoanalytical investigation of relative reactivity of some nitrate oxidants in tin-fueled pyrotechnic systems. J Therm Anal Calorim 2010 101:111119 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 24. Herbstein, FH, Kapon, M, Weissman, A. Old and new studies of the thermal decomposition of potassium permanganate. J Therm Anal Calorim 1991 41:303322.

    • Search Google Scholar
    • Export Citation
  • 25. Kissinger, HE. Reaction kinetics in differential thermal analysis. Anal Chem. 1957;29:17021706 .

  • 26. Lehmann, B, Karger-Kocsis, J. Isothermal and non-isothermal crystallisation kinetics of pCBT and PBT. J Therm Anal Calorim 2009 95:221226 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 27. Hatakeyama, T, Quinn, FX Thermal analysis, fundamentals and applications to polymer science fundamentals and applications to polymer science 1994 Wiley New York.

    • Search Google Scholar
    • Export Citation
  • 28. ASTM E698-05. Standard test method for Arrhenius kinetic constants for thermally unstable materials. doi: .

  • 29. Criado, JM, Perez-Maqueda, LA, Sanchez-Jimenez, PE. Dependence of the preexponential factor on temperature. J Therm Anal Calorim 2005 82:671675 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 30. Hosseini, SG, Eslami, A. Orthogonal array design method for optimization experiments of sodium azide microencapsulation with stearic acid. Prog Org Coat 2010 68:313318 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 31. Eslami, A, Hosseini, SG, Asadi, V. The effect of microencapsulation with nitrocellulose on thermal properties of sodium azide particles. Prog Org Coat 2009 65:269274 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 32. Guo, S, Wang, Q, Sun, J, Liao, X, Wang, Z-S. Study on the influence of moisture content on thermal stability of propellant. J Hazard Mater 2009 168:536541 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 33. Wang, T, Lu, YX, Zhu, ML, Zhang, JS, Ji, SJ. DSC research on critical temperature in thermal explosion synthesis reaction Ti3 + Al → TiAl3. J Therm Anal Calorim 2002 67:605611 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 34. Zhang, TL, Hu, RZ, Xie, Y, Li, FP. The estimation of critical temperatures of thermal explosion for energetic materials using non-isothermal DSC. Thermochim Acta 1994 244:171176 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 35. Tabak, A. Structural analysis of reactive dye species retained by the basic alumina surface. J Therm Anal Calorim. 2009;95:3136 .

  • 36. Bayer KH . AMCP 706-185. Military pyrotechnics series, Part 1, theory and application. United State Army Material Command, Washington; 1967.

    • Search Google Scholar
    • Export Citation

Manuscript Submission: HERE

  • Impact Factor (2019): 2.731
  • Scimago Journal Rank (2019): 0.415
  • SJR Hirsch-Index (2019): 87
  • SJR Quartile Score (2019): Q3 Condensed Matter Physics
  • SJR Quartile Score (2019): Q3 Physical and Theoretical Chemistry
  • Impact Factor (2018): 2.471
  • Scimago Journal Rank (2018): 0.634
  • SJR Hirsch-Index (2018): 78
  • SJR Quartile Score (2018): Q2 Condensed Matter Physics
  • SJR Quartile Score (2018): Q2 Physical and Theoretical Chemistry

For subscription options, please visit the website of Springer.

Journal of Thermal Analysis and Calorimetry
Language English
Size A4
Year of
Foundation
1969
Volumes
per Year
4
Issues
per Year
24
Founder Akadémiai Kiadó
Founder's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Publisher Akadémiai Kiadó
Springer Nature Switzerland AG
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
CH-6330 Cham, Switzerland Gewerbestrasse 11.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 1388-6150 (Print)
ISSN 1588-2926 (Online)