Authors:
Yunqing Han State Key Laboratory of Fire Science, University of Science and Technology of China, Hefei, Anhui, 230026, People’s Republic of China

Search for other papers by Yunqing Han in
Current site
Google Scholar
PubMed
Close
,
Haixiang Chen State Key Laboratory of Fire Science, University of Science and Technology of China, Hefei, Anhui, 230026, People’s Republic of China

Search for other papers by Haixiang Chen in
Current site
Google Scholar
PubMed
Close
, and
Naian Liu State Key Laboratory of Fire Science, University of Science and Technology of China, Hefei, Anhui, 230026, People’s Republic of China

Search for other papers by Naian Liu in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

A simple and precise incremental isoconversional integral method based on Li-Tang (LT) method is proposed for kinetic analysis of solid thermal decomposition, in order to evaluate the activation energy as a function of conversion degree. The new method overcomes the limitation of LT method in which the calculated activation energy is influenced by the lower limit of integration. By applying the new method to kinetic analysis of both the simulated nonisothermal case and experimental case of strontium carbonate thermal decomposition, it is shown that the dependence of activation energy on conversion degree evaluated by the new method is consistent with those obtained by Friedman (FR) method and the modified Vyazovkin method. As the new method is free from approximating the temperature integral and not sensitive to the noise of the kinetic data, it is believed to be more convenient in nonisothermal kinetic analysis of solid decompositions.

  • 1. Cai, JM, Bi, LS. Kinetic analysis of wheat straw pyrolysis using isoconversional methods. J Therm Anal Calorim 2009 98 1 325330 .

  • 2. Maitra, S et al. 2007 Non-isothermal decomposition kinetics of alkaline earth metal carbonates. J Am Ceram Soc 90 4 12991303 .

  • 3. Kaljuvee, T et al. 2009 Heating rate effect on the thermal behavior of ammonium nitrate and its blends with limestone and dolomite. J Therm Anal Calorim 97 1 215221 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 4. Boonchom, B. Kinetic and thermodynamic studies of MgHPO4 center dot A 3H(2)O by non-isothermal decomposition data. J Therm Anal Calorim. 2009;98 3 863871 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 5. Ferriol, M et al. 2003 Thermal degradation of poly(methyl methacrylate) (PMMA): modelling of DTG and TG curves. Polym Degrad Stab 79 2 271281 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 6. Burnham, AK. Computational aspects of kinetic analysis. Part D: the ICTAC kinetics project—multi-thermal-history model-fitting methods and their relation to isoconversional methods. Thermochim Acta. 2000;355 1–2 165170 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7. Roduit, B. Computational aspects of kinetic analysis. Part E: the ICTAC Kinetics Project—numerical techniques and kinetics of solid state processes. Thermochim Acta. 2000;355 1–2 171180 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8. Vyazovkin, S. A unified approach to kinetic processing of nonisothermal data. Int J Chem Kinet. 1996;28 2 95101 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 9. Vyazovkin, S, Wight, CA. Isothermal and nonisothermal reaction kinetics in solids: In search of ways toward consensus. J Phys Chem A 1997 101 44 82798284 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10. Vyazovkin, S. Computational aspects of kinetic analysis. Part C. The ICTAC Kinetics Project—the light at the end of the tunnel?. Thermochim Acta. 2000;355 1–2 155163 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11. Chen, HX, Liu, NA. Approximation expressions for the temperature integral. Prog Chem 2008 20 7–8 10151020.

  • 12. Ozawa, T. A new method of analyzing thermogravimetric data. Bull Chem Soc Jpn. 1965;38 11 18811886 .

  • 13. Flynn, JH, Wall, LA. A quick, direct method for the determination of activation energy from thermogravimetric data. J Polym Sci Part B: Polym Lett 1966 4 5 323328 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 14. Coats, AW, Redfern, JP. Kinetic parameters from thermogravimetric data. Nature 1964 201 4914 6869 .

  • 15. Senum, GI, Yang, RT. Rational approximations of the integral of the Arrhenius function. J Therm Anal Calorim 1977 11 3 445447 .

  • 16. Doyle, CD. Estimating isothermal life from thermogravimetric data. J Appl Polym Sci. 1962;6 24 639642 .

  • 17. Chen, HX, Liu, N, Shu, LF. Error of kinetic parameters for one type of integral method for thermogravimetric measurements. Polym Degrad Stab 2005 90 1 132135 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 18. Li, C-R, Tang, TB. Dynamic thermal analysis of solid-state reactions. J Therm Anal Calorim 1997 49 3 12431248 .

  • 19. Li, CR, Tang, TB. Isoconversion method for kinetic analysis of solid-state reactions from dynamic thermoanalytical data. J Mater Sci 1999 34 14 34673470 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 20. Li, C-R, Tang, TB. A new method for analysing non-isothermal thermoanalytical data from solid-state reactions. Thermochim Acta 1999 325 1 4346 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 21. Friedman, H. Kinetics of thermal degradation of char-forming plastics from thermogravimetry-application to a phenolic resin. J Polym Sci Part C: Polum Lett. 1964;6:183195 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 22. Budrugeac, P, Segal, E. On the Li and Tang’s isoconversional method for kinetic analysis of solid-state reactions from thermoanalytical data. J Mater Sci 2001 36 11 27072710 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 23. Vyazovkin, S. Modification of the integral isoconversional method to account for variation in the activation energy. J Comput Chem. 2001;22 2 178183 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 24. Ortega, A. A simple and precise linear integral method for isoconversional data. Thermochim Acta. 2008;474 1–2 8186 .

  • 25. Wanjun, T, Donghua, C. An integral method to determine variation in activation energy with extent of conversion. Thermochim Acta 2005 433 1–2 7276 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 26. Budrugeac, P, Segal, E. On the nonlinear isoconversional procedures to evaluate the activation energy of nonisothermal reactions in solids. Int J Chem Kinet 2004 36 2 8793 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 27. Budrugeac, P. Differential non-linear isoconversional procedure for evaluating the activation energy of non-isothermal reactions. J Therm Anal Calorim. 2002;68 1 131139 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 28. Vyazovkin, S. Evaluation of activation energy of thermally stimulated solid-state reactions under arbitrary variation of temperature. J Comput Chem. 1997;18 3 393402 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Collapse
  • Expand

To see the editorial board, please visit the website of Springer Nature.

Manuscript Submission: HERE

For subscription options, please visit the website of Springer Nature.

Journal of Thermal Analysis and Calorimetry
Language English
Size A4
Year of
Foundation
1969
Volumes
per Year
1
Issues
per Year
24
Founder Akadémiai Kiadó
Founder's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Publisher Akadémiai Kiadó
Springer Nature Switzerland AG
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
CH-6330 Cham, Switzerland Gewerbestrasse 11.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 1388-6150 (Print)
ISSN 1588-2926 (Online)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Apr 2024 1 0 0
May 2024 6 0 0
Jun 2024 11 0 0
Jul 2024 11 0 0
Aug 2024 8 0 0
Sep 2024 35 0 0
Oct 2024 20 0 0