One of the most important challenges with solid oxide fuel cells (SOFC) is to find cathode materials with high enough catalytic activity for the dissociation of the molecular oxygen. Oxide mixed conductors with the perovskite structure (ABO3) and high Co content in the B site have been extensively studied to be used as cathode in SOFC. This is the second part of a review of high temperature properties of two mixed conductors systems. The first part was focused on the n = 2 Sr3FeMO6+δ (M = Fe, Co, Ni) Rudlesdden Popper phases, while in this paper we discuss the thermodynamic and transport properties of the perovskite solid solution Sr1−xLaxFe0.2Co0.8O3−δ (0 ≤ x ≤ 0.4) in the temperature range 773 ≤ T ≤ 1173 K. In particular, the interest has been focused on the x = 0 sample, which exhibits large ionic conductivity values (σi ~1 S cm−1), but suffers a structural transformation from cubic to orthorhombic symmetry because the ordering of the oxygen vacancies when the oxygen partial pressure decreases. Measurements of the oxygen chemical potential () as function of oxygen content and temperature, coupled with high temperature X-ray diffraction data, permitted us to broaden the knowledge of the T–δ–p(O2) phase diagram for the x = 0 sample. In addition, we have investigated the effects of the La incorporation on the stability range of the cubic phases of the Sr1−xLaxFe0.2Co0.8O3−δ solid solution.
1. Skinner, SJ. Recent advances in perovskite-type materials for solid oxide fuel cell cathodes. Int J Inorg Mater. 2001;3:113–121 .
2. Bouwmeester, HJ, Burggraf, AJ 1997 PJ Gellings HJ Bouwmeester eds. The CRC handbook of solid state electrochemistry CRS Press Boca Raton, FL .
3. Steel, BCH, Heinzel, A. Materials for fuel-cell technologies. Nature 2001 414:345–352 .
4. Larminie, J, Dicks, A Fuel cells systems explained 2003 2 Wiley New York.
5. Caneiro, A, Prado, F, Serquis, A. Physical properties of non-stoichiometrics oxides: superconducting oxides. J Therm Anal Calorim 2006 83 2 507–518 .
6. González Arias, A, Torres, C C de Francisco 2006 Muñoz, JM, Hernández Gómez, P, Alejos, O, Montero, O, Iñiguez, JI. Defect concentration in Ti-substituted YIG from TG curves. J Therm Anal Calorim 86 1 195–198 .
7. Grzesik, Z, Mrowec, S. Kinetics and thermodynamics of point defects in non-stoichiometric metal oxides and sulphides. J Therm Anal Calorim 2007 90 1 269–282 .
8. Malta, LFB, Caffarena, VR, Medeiros, ME, Ogasawara, T. TA of non-stoichiometric ceria obtained via hydrothermal synthesis. J Therm Anal Calorim 2004 75:901–910 .
9. Aggarwal, S, Töpfer, J, Tsai, T-L, Dieckmann, R. Point defects and transport in binary and ternary, non-stoichiometric oxide. Solid State Ion 1997 101–103:321–331.
10. Bishop, SR, Duncan, KL, Wachsman, ED. Defect equilibria and chemical expansion in non-stoichiometric undoped and gadolinium-doped cerium oxide. Electrochim Acta 2009 54 5 1436–1443 .
11. Hashimoto, T, Yoshinaga, M, Ueda, Y, Komazaki, K, Asaoka, K, Wang, S. Characterization of phase transition of Ba2−xSrxIn2O5 by thermal analysis and high temperature X-ray diffraction. J Therm Anal Calorim 2002 69:909–917 .
12. Vashook, VV, Zinkevich, MV, Zonov, YG, Kharton, VV, Tsipis, EV, Yaremchenko, AA, Marozau, IP, Viskup, AP, Frade, JR. Naumovich EN Phase relations in oxygen-deficient SrCoO2.5−δ. Solid State Ion 1999 116 1–2 129–138 .
13. Rycerz L , Ingier-Stocka E, Gadzuric S, Gaune-Escard M. Review of the thermodynamic and transport properties of EuBr2-RbBr binary system. J Therm Anal Calorim. 2010. doi: .
14. Kumekawa, Y, Hirai, M, Kobayashi, Y, Endoh, S, Oikawa, E, Hashimoto, T. Evaluation of thermodynamic and kinetic stability of CuAlO2 and CuGaO2. J Therm Anal Calorim 2010 99:57–63 .
15. Caneiro, A, Bonnat, M, Fouletier, J. Measurement and regulation of oxygen content in selected gases using solid electrolyte cells. IV. Accurate preparation of CO2–CO and H2O–H2 mixtures. J Appl Electrochem 1981 11:83–90 .
16. Caneiro, A, Bavdaz, P, Fouletier, J, Abriata, JP. Adaptation of an electrochemical system for measurement and regulation of oxygen partial pressure to a symmetrical thermogravimetric analysis system developed using a Cahn 1000 electrobalance. Rev Sci Instrum 1982 53:1072–1075 .
17. Qiu, L, Lee, TH, Liu, L–M, Yang, YL, Jacobson, AJ. Oxygen permeation studies of SrCo0.8Fe0.2O3−δ. Solid State Ion 1995 76:321–329 .
18. Prado, F, Armstrong, T, Caneiro, A, Manthiram, A. Structural stability and oxygen permeation properties of Sr3−xLaxFe2−yCoyO7-δ (0 ≤ x ≤ 0.3 and 0 ≤ y ≤ 1.0). J Electrochem Soc 2001 148:J7–J14 .
19. Liu, LM, Lee, TH, Qiu, L, Yang, YL, Jacobson, AJ. A thermogravimetric study of the phase diagram of strontium cobalt iron oxide, SrCo0.8Fe0.2O3−δ. Mater Res Bull 1996 31:29–35 .
20. Kruidhof, H, Bouwmeester, HJM RHE van Doorn Burggraf, AJ. Influence of order-disorder transitions on oxygen permeability through selected nonstoichiometric perovskite-type oxides. Solid State Ion. 1993;63–65:816–822 .
21. Pei, S, Kleefisch, MS, Kobylinski, TP, Faber, J, Udovich, CA, Zhang-McCoy, V, Dabrowski, B, Balachandran, U, Mieville, RL, Poeppel, RB. Failure mechanisms of ceramic membrane reactors in partial oxidation of methane to synthesis gas. Catal Lett 1994 30:201–212 .
22. Grunbaum, N, Mogni, L, Prado, F, Caneiro, A. Phase equilibrium and electrical conductivity of SrCo0.8Fe0.2O3−δ. J Solid State Chem 2004 177 7 2350–2357 .
23. Hodges, JP, Short, S, Jorgensen, JD, Xiong, X, Dabrowski, B, Mini, SM, Kimball, CW. Evolution of oxygen-vacancy ordered crystal structures in the perovskite series Sr(n)Fe(n)O(3n − 1) (n = 2, 4, 8, and ∞), and the relationship to electronic and magnetic properties. J Solid State Chem 2000 151:190–209 .
24. Knittel, DR, Pack, SP, Lin, SH, Eyring, L. A thermodynamic model of hysteresis in phase transitions and its application to rare earth oxide systems. J Chem Phys 1977 67:134–142 .
25. Inaba, H, Pack, SP, Lin, SH, Eyring, L. A kinetic study of oxidation of praseodymium oxides: PrO1.714+0.032 O2→PrO1.778. J Solid State Chem 1980 33:295–304 .
26. Porter, DA, Easterling, KE Phase transformations in metals and alloys 1991 Chapman & Hall London.
27. Tikhonovich, VN, Naumovich, EN, Logvinovich, DI, Kharton, VV, Vecher, AA. Oxygen deficiency and phase transitions in SrCo1−x−yFexCryO3−δ (x = 0.10–0.40, y = 0–0.05). J Solid State Electrochem 2003 7:77–82.
28. IUPAC 1987 Commission on thermodynamics, “oxygen, international thermodynamic tables of the fluid state–9” Blackwell Scientific Oxford.
29. Mizusaki, J, Mima, Y, Yamauchi, S, Fueki, K, Tawaga, H. Nonstoichiometry of the perovskite-type oxides La1−xSrxCoO3−δ. J Solid State Chem 1989 80:102–111 .
30. Mitberg, EB, Patrakeev, MV, Leonidov, IA, Kozhevnikov, VL, Poeppelmeier, KR. High-temperature electrical conductivity and thermopower in nonstoichiometric La1−xSrxCoO3−δ (x = 0.6). Solid State Ion 2000 130:325–330 .
31. Huang, K, Wan, J, Goodenough, JB. Oxide-ion conducting ceramics for solid oxide fuel cells. J Mater Sci 2001 36:1093–1098 .
32. Prado, F, Grunbaum, N, Caneiro, A, Manthiram, A. Effect of La3+ doping on the perovskite-to-brownmillerite transformation in Sr1−xLaxCo0.8Fe0.2O3−δ (0 ≤ x≤0.4). Solid State Ion 2004 167 1–2 147–154 .