View More View Less
  • 1 College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, People’s Republic of China
Restricted access

Abstract

Microencapsulated ammonium polyphosphate (MAPP) is prepared using hydroxyl silicone oil by in situ polymerization and characterized by XPS. Microencapsulation gives MAPP better water resistance and flame retardance compared with APP in thermoplastic polyurethane (TPU). Thermal stability and fire resistance behavior have been analyzed and compared. The LOI value of the TPU/MAPP composite is higher than that of the TPU/APP composite. The UL 94 rating of the TPU/MAPP composite is V-0 at the 20 wt% additive level, whereas TPU/APP gives V-2 rating at the same loading level. The water resistant properties of the TPU composites are studied. Results of the cone calorimeter and microscale combustion calorimeter experiment show that MAPP is an effective flame retardant in TPU compared with APP.

  • 1. Bourbigot, S, Le Bras, M, Leeuwendal, R, Shen, KK, Schubert, D. Recent advances in the use of zinc borates in flame retardancy of EVA. Polym Degrad Stabil. 1999;64:419425. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 2. Le Bras, M, Bourbigot, S, Delporte, C, Siat, C, Le Tallec, Y. New intumescent formulations of fire-retardant polypropylene-discussion of the free radical mechanism of the formation of carbonaceous protective material during the thermo-oxidative treatment of the additives. Fire Mater. 1996;20:191203. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 3. Àgueda, A, Liodakis, S, Pastor, E, Planas, E. Characterization of the thermal degradation and heat of combustion of Pinus halepensis needles treated with ammonium-polyphosphate-based retardants. J Therm Anal Calorim. 2009;98:235243. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 4. Almeras, X, Le Bras, M, Hornsby, P, Bourbigot, S, Marosi, Gy, Keszei, S, Poutch, F. Effect of fillers on the fire retardancy of intumescent polypropylene compounds. Polym Degrad Stabil. 2003;82:325331. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 5. Almeras, X, Le Bras, M, Poutch, F, Bourbigot, S, Marosi, G, Anna, P. Effect of fillers on fire retardancy of intumescent polypropylene blends. Macromol Symp. 2003;198:435448. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 6. Balabanovich, AI. The effect of ammonium polyphosphate on the combustion and thermal decomposition behavior of poly(butylene terephthalate). J Fire Sci. 2003;21:285298. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7. Lewin, M, Endo, M. Catalysis of intumescent flame retardancy of polypropylene by metallic compounds. Polym Adv Technol. 2003;14:311. .

  • 8. Gao, M, Wu, W, Yan, Y. Thermal degradation and flame retardancy of epoxy resins containing intumescent flame retardant. J Therm Anal Calorim. 2009;95:605608. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 9. Ma, ZL, Gao, JG, Bai, LG. Studies of polypropylene-intumescent flame-retardant composites based on etched polypropylene as a coupling agent. J Appl Polym Sci. 2004;92:13881391. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10. Wang, ZY, Han, EH, Ke, W. Effect of nanoparticles on the improvement in fire-resistant and anti-ageing properties of flame-retardant coating. Surf Coat Technol. 2006;200:57065716. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11. Bourbigot, S, Le Bras, M, Duquesne, S, Rochery, M. Recent advances for intumescent polymers. Macromol Mater Eng. 2004;289:499511. .

  • 12. Wu, K, Wang, ZZ, Liang, HJ. Microencapsulation of ammonium polyphosphate: preparation, characterization and its flame retardance in polypropylene. Polym Compos. 2008;29:854860. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13. Wu, K, Wang, ZZ, Hu, Y. Microencapsulated ammonium polyphosphate with urea–melamine–formaldehyde shell: preparation, characterization, and its flame retardance in polypropylene. Polym Adv Technol. 2008;19:11181125. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 14. Ni, JX, Tai, QL, Lu, HD, Hu, Y, Song, L. Microencapsulated ammonium polyphosphate with polyurethane shell: preparation, characterization, and its flame retardance in polyurethane. Polym Adv Technol. 2009;21:392400.

    • Search Google Scholar
    • Export Citation
  • 15. Ni JX , Song L, Hu Y, Zhang P, Xing WY. Preparation and characterization of microencapsulated ammonium polyphosphate with polyurethane shell by in situ polymerization and its flame retardance in polyurethane. Polym Adv Technol. 2019;20:9991005.

    • Search Google Scholar
    • Export Citation
  • 16. Ravadits, AT, Marosi, G, Marton, A, Szep, A. Organosilicon surface layer on polyolefins to achieve improved flame retardancy through an oxygen barrier effect. Polym Degrad Stabil. 2001;74:419422. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 17. Marosi, G, Marton, A, Anna, P, Bertalan, G, Marosfoi, B, Szep, A. Ceramic precursor in flame retardant systems. Polym Degrad Stabil. 2002;77:259265. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 18. Marosi, G, Marton, A, Szep, A, Csontos, I, Keszei, S, Zimonyi, E, Toth, A, Almeras, X. Fire retardancy effect of migration in polypropylene nanocomposites induced by modified interlayer. Polym Degrad Stabil. 2003;82:379385. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19. Marosfoi B , Szabo A, Kiss K, Marosi G. Use of organosilicone composites as flame retardant additives and coating for polypropylene. In: Kandola K, Hull R, editors. Fire retardancy of polymers: new strategies and mechanisms. Vol 4. Cambridge: The Royal Society of Chemistry; 2008. p. 4958.

    • Search Google Scholar
    • Export Citation
  • 20. Chen, XL, Jiao, CM. Synergistic effects of hydroxy silicone oil on intumescent flame retardant polypropylene system. J Polym Res. 2009;16:537543. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 21. Chen, XL, Jiao, CM. Synergistic effects of hydroxy silicone oil on intumescent flame retardant polypropylene system. Fire Saf J. 2009;44:10101014. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 22. Tang, Y, Hu, Y, Wang, SF, Gui, Z, Chen, ZY, Fan, WC. Intumescent flame retardant-montmorillonite synergism in polypropylene-layered silicate nanocomposites. Polym Int. 2003;52:13961400. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 23. Tang, Y, Hu, Y, Li, BG, Liu, L, Wang, ZZ, Chen, ZY, Fan, WC. Polypropylene/montmorillonite nanocomposites and intumescent, flame-retardant montmorillonite synergism in polypropylene nanocomposites. J Polym Sci Polym Chem. 2004;42:61636173. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 24. Zanetti, M, Camino, G, Thomann, R, Mülhaupt, R. Synthesis and thermal behaviour of layered silicate-EVA nanocomposites. Polymer. 2001;42:45014507. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 25. Hong, K, Park, S. Preparation of polyurethane microcapsules with different soft segments and their characteristics. React Funct Polym. 1999;42:193200. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 26. Erickson, KL. Thermal decomposition mechanisms common to polyurethane, epoxy, poly(diallyl phthalate), polycarbonate and poly(phenylene sulfide). J Therm Anal Calorim. 2007;89:427440. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 27. Le Bras, M, Bugajny, M, Lefebvre, JM, Bourbigot, S. Use of polyurethanes as char-forming agents in polypropylene intumescent formulations. Polym Int. 2000;49:11151124. .

    • Crossref
    • Search Google Scholar
    • Export Citation

Manuscript Submission: HERE

  • Impact Factor (2019): 2.731
  • Scimago Journal Rank (2019): 0.415
  • SJR Hirsch-Index (2019): 87
  • SJR Quartile Score (2019): Q3 Condensed Matter Physics
  • SJR Quartile Score (2019): Q3 Physical and Theoretical Chemistry
  • Impact Factor (2018): 2.471
  • Scimago Journal Rank (2018): 0.634
  • SJR Hirsch-Index (2018): 78
  • SJR Quartile Score (2018): Q2 Condensed Matter Physics
  • SJR Quartile Score (2018): Q2 Physical and Theoretical Chemistry

For subscription options, please visit the website of Springer.

Journal of Thermal Analysis and Calorimetry
Language English
Size A4
Year of
Foundation
1969
Volumes
per Year
4
Issues
per Year
24
Founder Akadémiai Kiadó
Founder's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Publisher Akadémiai Kiadó
Springer Nature Switzerland AG
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
CH-6330 Cham, Switzerland Gewerbestrasse 11.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 1388-6150 (Print)
ISSN 1588-2926 (Online)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Jun 2021 12 2 3
Jul 2021 4 1 1
Aug 2021 7 0 0
Sep 2021 10 5 1
Oct 2021 0 0 0
Nov 2021 9 0 0
Dec 2021 0 0 0