Authors:
G. JanowskaFaculty of Chemistry, Institute of Polymers and Dye Technology, Technical University of Łódź, Łódź, Poland

Search for other papers by G. Janowska in
Current site
Google Scholar
PubMed
Close
,
A. Kucharska-JastrzabekFaculty of Chemistry, Institute of Polymers and Dye Technology, Technical University of Łódź, Łódź, Poland

Search for other papers by A. Kucharska-Jastrzabek in
Current site
Google Scholar
PubMed
Close
,
A. KasiczakFaculty of Chemistry, Institute of Polymers and Dye Technology, Technical University of Łódź, Łódź, Poland

Search for other papers by A. Kasiczak in
Current site
Google Scholar
PubMed
Close
, and
W. M. RzymskiFaculty of Chemistry, Institute of Polymers and Dye Technology, Technical University of Łódź, Łódź, Poland

Search for other papers by W. M. Rzymski in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The article describes the measurement results of the thermal properties of cross-linked blends of carboxylated butadiene-acrylonitrile rubber (XNBR, Krynac X.7.50) and chlorosulfonated polyethylene (CSM, Hypalon 48) under inert gas (DSC, TG) and in air (derivatography). The blends were cross linked at a temperature of 150 °C by means of MgO in the presence of stearic acid. The thermal curves were interpreted from the point of view of phase transitions and chemical reactions of high-molecular components. It has been found that the polymers under investigation show a good compatibility resulting from the presence of both inter-polymeric covalent bonds and inter-polymeric ionic bridges containing magnesium ions that fulfill the role of chemical compatibilizer. The study has shown that XNBR/CSM blends belong to a group of polymeric materials that are self-extinguished in air. Their flammability, determined by OI and the combustion time in air, clearly depends on the cross-linking degree associated with the quantity of MgO incorporated into the blend of elastomers.

  • 1. Koziol, M, Rzymski, WM. Curing of blends composed of carboxylated acrylonitrile-butadiene rubber and chlorosulphonated polyethylene. Ann Pol Chem Soc. 2004;3:10151018.

    • Search Google Scholar
    • Export Citation
  • 2. Koziol, M, Rzymski, WM. Unconventional crosslinking of the blends of chlorosulfonated polyethylene and carboxylated acrylonitrile-butadiene rubber. Polimery. 2005;50:587592.

    • Search Google Scholar
    • Export Citation
  • 3. Kmiotek, M, Rzymski, WM. Interelastomer reactions in unconventional elastomer blends. Polimery. 2007;52:511516.

  • 4. Koziol M , Rzymski WM, Mackowska A. Effect of type and curing conditio on the properties of carboxylated acrylonitrile-butadiene rubber. e-Polymers. 2006;P_011:1–6.

    • Search Google Scholar
    • Export Citation
  • 5. Rzymski, WM, Kmiotek, M, Bociong, K. New elastomer on materials made of elastomer blends modified by specific intra- or interelastomer reactions. Chem Listy. 2009;103:3537.

    • Search Google Scholar
    • Export Citation
  • 6. Janowska, G, Rzymski, WM, Kmiotek, M, Kucharska, A, Kasiczak, A. Thermal properties and combustibility of chlorosulfonated polyethylene. Polimery. 2009;54:245249.

    • Search Google Scholar
    • Export Citation
  • 7. Janowska, G, Kucharska, A, Rzymski, WM, Kasiczak, A. DSC study of chlorosulphonated polyethylene. J Therm Anal Calorim. 2010;102:10191024. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8. Janowska, G, Kucharska, A, Kawałek, J, Rzymski, WM. Thermal properties of crosslinked blends of chlorosulfonated polyethylene and styrene-butadiene rubber. Polimery. 2009;54:648653.

    • Search Google Scholar
    • Export Citation
  • 9. Janowska, G, Kucharska-Jastrzabek, A. The effect of chlorosulphonated polyethylene on thermal properties and combustibility of butadiene–styrene rubber. J Therm Anal Calorim. 2010;101:10931099. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10. Radhakrishnan, CK, Sujith, A, Unnikrishnan, G. Thermal behaviour of styrene butadiene rubber/poly(ethylene-co-vinyl acetale) blends TG and DTG analysis. J Therm Anal Calorim. 2007;90:191199. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11. Stankowski, M, Kropidłowska, A, Gazda, M, Haponiuk, JT. Properties of polyamide 6 and thermoplastic polyurethane blends containing modified montmorillonites. J Therm Anal Calorim. 2008;94:817823. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 12. Lujaji F , Bereczky A, Janosi L, Novak Cs, Mbarawa M. Cetane number and thermal properties of vegetable oil, biodiesel, 1-butanol and diesel blends. J Therm Anal Calorim. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13. Rao, V, Johns, J. Thermal behaviour of chitosan/natural rubber latex blends TG and DSC analysis. J Therm Anal Calorim. 2008;92:801806. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 14. Ying, J-R, Liu, S-P, Guo, F, Zhou, X-P, Xie, X-L. Non-isothermal crystallization and crystalline structure of PP/POE blends. J Therm Anal Calorim. 2008;91:723731. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15. Rajkumar, T, Vijayakumar, CT, Sivasamy, P, Sreedhar, B, Wilkie, ChA. Thermal degradation studies on PMMA–HET acid based oligoesters blends. J Therm Anal Calorim. 2010;100:651660. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 16. Tan, SG, Chow, WS. Thermal properties of anhydride-cured bio-based epoxy blends. J Therm Anal Calorim. 2010;101:10511058. .

  • 17. Martelli, SM, Fernandes, EG, Chiellini, E. Thermal analysis of soil-buried oxo-biodegradable polyethylene based blends. J Therm Anal Calorim. 2009;97:853858. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 18. Chen, H, Hu, X, Cebe, P. Thermal properties and chase transitions in blends of nylon-6 with silk fibroin. J Therm Anal Calorim. 2008;93:201206. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19. Haghighi Yazdi, M, Lee-Sullivan, P. Determination of dual Glass transition temperatur es of a PC/ABS blends Rusing two TMA modes. J Therm Anal Calorim. 2009;96:714. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 20. Kiziltas A , Gardner DJ, Han Y, Yang H-S. Thermal properties of microcrystalline cellulose-filled PET–PTT blend polymer composites. J Therm Anal Calorim. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 21. López, J, Rico, M, Montero, B, Díez, J, Ramírez, C. Polymer blends based on an epoxy-amine thermoset and a thermoplastic. Effect of thermoplastic on cure reaction and thermal stability of the system. J Therm Anal Calorim. 2009;95:369376. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 22. Ciesińska, W, Zieliński, J, Brzozowska, T. Thermal treatment of pitch-polymer blends. J Therm Anal Calorim. 2009;95:193196. .

  • 23. Afzal, AB, Akhtar, MJ, Svensson, L-G. Thermal studies of DBSA-doped polyaniline/PVC blends by isothermal microcalorimetry. J Therm Anal Calorim. 2010;100:10171025. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 24. Kaljuvee, T, Rudjak, I, Edro, E, Trikkel, A. Heating rate effect on the thermal behavior of ammonium nitrate and its blends with limestone and dolomite. J Therm Anal Calorim. 2009;97:215221. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 25. Rosa, DS, Bardi, MAG, Machado, LDB, Dias, DB, Silva, LGA, Kodama, Y. Starch plasticized with glycerol from biodiesel and polypropylene blends. J Therm Anal Calorim. 2010;102:181186. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 26. Menyhárd, A, Faludi, G, Varga, J. β-crystallisation tendency and structure of poly-propylene grafted by maleic anhydride and its blends with isotactic polypropylene. J Therm Anal Calorim. 2008;93:937945. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 27. Ciesińska, W. Thermorheological studiem on polymeric blends. J Therm Anal Calorim. 2008;93:747751. .

  • 28. Derval Dos Santos, R, Bardi, MAG, Machado, LDB, Dias, DB, Andrade e Silva, LG, Kodama, Y. Influence of thermoplastic starch plasticized with biodiesel glycerol on thermal properties of pp blends. J Therm Anal Calorim. 2009;97:565570. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 29. Dias, DS, Crespi, MS, Kobelnik, M, Ribeiro, CA. Calorimetric and SEM studies of PHB–PET polymeric blends. J Therm Anal Calorim. 2009;97:581584. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 30. Simoes, RD, Rodriguez-Perez, MA, de Saja, JA, Constantino, CJL. Thermomechanical characterization of PVDF and P(VDF-TrFE) blends containing corn starch and natural rubber. J Therm Anal Calorim. 2010;99:621629. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 31. Perez, CJ, Vázquez, A, Alvarez, VA. Isothermal crystallization of lavered silicate/starch-polycaprolactone blend nanocomposites. J Therm Anal Calorim. 2008;91:749757. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 32. Markovic, G, Marinovic-Cincovic, M, Vodnik, V, Radovanovic, B, Budinski-Simendic, J, Veljkovic, O. Thermal stability of acrylonitrile/chlorosulphonated polyethylene rubber blend. J Therm Anal Calorim. 2009;97:9991006. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 33. Mooney, M. A theory of large elastic deformation. J Appl Phys. 1940;11:582592. .

  • 34. Rivlin, RS. Torsion of a rubber cylinder. J Appl Phys. 1947;18:444449. .

  • 35. Patent PRL 129411 (1987).

  • 36. Janowska, G, Kucharska, A. The influence of the method of butadiene rubbers cross-linking on their thermal properties. J Therm Anal Calorim. 2009;96:561565. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 37. Slusarski, L, Janowska, G. Thermal decomposition of homo- and copolymers of isobutylene. J Therm Anal Calorim. 1980;19:435447. .

  • 38. Janowska, G, Slusarski, L. Thermal properties of cis-1, 4-poly(butadiene). J Therm Anal Calorim. 2001;65:205212. .

  • 39. Rzymski, WM, Srogosz, A. The solubility parameter of chlorosulfonated polyethylene. Polimery. 2000;45:4145.

  • 40. Rzymski WM , Koziol M. Kohasionseigenschaften von karboxylierten Nitrilkautschuken. Polymerwerkstoffe. 2006. Halle/Saale 27-29.09.2006, p. 196.

    • Search Google Scholar
    • Export Citation
  • Collapse
  • Expand
  • Top

To see the editorial board, please visit the website of Springer Nature.

Manuscript Submission: HERE

For subscription options, please visit the website of Springer Nature.

Journal of Thermal Analysis and Calorimetry
Language English
Size A4
Year of
Foundation
1969
Volumes
per Year
1
Issues
per Year
24
Founder Akadémiai Kiadó
Founder's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Publisher Akadémiai Kiadó
Springer Nature Switzerland AG
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
CH-6330 Cham, Switzerland Gewerbestrasse 11.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 1388-6150 (Print)
ISSN 1588-2926 (Online)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Mar 2022 2 0 0
Apr 2022 3 0 0
May 2022 1 0 0
Jun 2022 7 1 0
Jul 2022 2 0 0
Aug 2022 0 0 0
Sep 2022 0 0 0

Geopolymers

Inorganic polymeric new materials

Author:
J. Davidovits