View More View Less
  • 1 School of Applied Sciences, RMIT University, GPO Box 2476V, Melbourne, VIC, 3001, Australia
Restricted access

Abstract

Melting behaviour of poly(3-hydroxybutyrate) (PHB) has been investigated by conventional DSC and each of several methods of modulated temperature differential scanning calorimetry (mT-DSC) such as heat-cool, iso-scan, step-scan and quasi-isothermal (QI). Thermal properties were investigated after fast and slow cooling crystallisation treatments. Multiple melting peak behaviour was observed for all methods except conventional melting with an average heating rate. Comparison of the mT-DSC data revealed that PHB underwent reversing melting including several reversible events and some non-reversible contributions under the modulation conditions. The main melting of PHB was irreversible, as were crystallisation and annealing, where the crystals can approach equilibrium. The various fusion enthalpy values were measured and they confirmed significant melt-recrystallisation of PHB with different melting conditions. Only the QI method revealed a true reversible contribution.

  • 1. Poirier, Y, Dennis, DE, Nawrath, C, Somerville, C. Progress toward biologically produced biodegradable thermoplastics. Adv Mater. 1993;5:3037. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 2. Cox, MK. Studies in polymer science In: Doi, Y, Fukuda, K, eds. Biodegradable plastics and polymers. vol. 12 Amsterdam: Elsevier; 1994. 120135.

    • Search Google Scholar
    • Export Citation
  • 3. Doi, Y. Microbial polyesters. New York: VCH Publishers; 1990.

  • 4. Holmes, PA. Applications of PHB—a microbially produced biodegradable thermoplastic. Phys Technol. 1985;16:3236. .

  • 5. EI-Hadi, A, Schanabel, AR, Straube, E, Muller, EG, Henning, S. Correlation between degree of crystallinity, morphology, glass temperature, mechanical properties and biodegradation of poly (3-hydroxyalkanoate) PHAs and their blends. Polym Test. 2002;21:665674. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 6. Ha, CS, Cho, WJ. Miscibility, properties, and biodegradability of microbial polyester containing blends. Prog Polym Sci. 2002;27:759809. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7. Gill, PS, Sauerbrunn, SR, Reading, M. Modulated differential scanning calorimetry. J Therm Anal Calorim. 1993;40:931939. .

  • 8. Schawe, JEK. A comparison of different evaluation methods in modulated temperature DSC. Thermochim Acta. 1995;260:116. .

  • 9. Wunderlich, B, Okazaki, I, Ishikiriyama, K, Boller, A. Melting by temperature-modulated calorimetry. Thermochim Acta. 1998;324:7785. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10. Wunderlich, B, Boller, A, Okazaki, I, Ishikiriyama, K, Chen, W, Pyda, M, Pak, J, Moon, I, Androsch, R. Temperature-modulated differential scanning calorimetry of reversible and irreversible first-order transitions. Thermochim Acta. 1999;330:2138. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11. Amarasinghe, G, Chen, F, Genovese, A, Shanks, RA. Thermal memory of polyethylenes analyzed by temperature modulated differential scanning calorimetry. J Appl Polym Sci. 2003;90:681692. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 12. Gunaratne, LMWK, Shanks, RA. Isothermal crystallisation kinetics of poly(3-hydroxybutyrate) using step-scan DSC. J Therm Anal Calorim. 2006;83:313319. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13. Pielichowski, K, Flejtuch, K, Pielichowski, J. Step-scan alternating DSC study of melting and crystallisation in poly(ethylene oxide). Polymer. 2004;45:12351242. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 14. Wunderlich, B. Macromolecular physics. 1 New York: Academic Publishers; 1973.

  • 15. Sauer, BB, Kamper, WG, Blanchard, EN, Threefoot, SA, Hsiao, BS. Temperature modulated DSC studies of melting and recrystallization in polymers exhibiting multiple endotherms. Polymer. 2000;41:10991108. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 16. Righetti, MC. Reversible melting in poly(butylene terephthalate). Thermochim Acta. 1999;330:131135. .

  • 17. Wurm, A, Merzlyakov, M, Schick, C. Isothermal crystallisation of PCL studied by temperature modulated dynamic mechanical and TMDSC analysis. J Therm Anal Calorim. 1999;56:11551161. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 18. Androsch, R, Wunderlich, B. A study of annealing of poly(ethylene-co-octene) by temperature-modulated and standard differential scanning calorimetry. Macromolecules. 1999;32:72387247. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19. Androsch, R, Wunderlich, B. Reversible crystallization and melting at the lateral surface of isotactic polypropylene crystals. Macromolecules. 2001;34:59505960. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 20. Pak, J, Wunderlich, B. Melting and crystallization of polyethylene of different molar mass by calorimetry. Macromolecules. 2001;34:44924503. .

  • 21. Kampert, WG, Sauer, BB. Temperature modulated DSC studies of melting and recrystallization in poly(ethylene-2,6-naphthalene dicarboxylate) (PEN) and blends with poly(ethylene terephthalate) (PET). Polymer. 2001;42:87038714. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 22. Pyda, M, Di Lorenzo, ML, Pak, J, Kamasa, P, Buzin, AS, Grebowicz, J, Wunderlich, BJ. Reversible and irreversible heat capacity of poly[carbonyl(ethylene-co-propylene)] by temperature-modulated calorimetry. Polym Sci B. 2001;39:15651577. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 23. Wunderlich, B. Molecular nucleation and segregation. Discuss Faraday Soc. 1979;68:239243. .

  • 24. Cser, F, Hopewell, JL, Shanks, RA. Reversible melting of thermally fractionated polyethylene. J Therm Anal. 1998;54:709719. .

  • 25. Wunderlich, B, Jin, Y, Boller, A. Mathematical description of differential scanning calorimetry based on periodic temperature modulation. Thermochim Acta. 1994;238:277293. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 26. Boller, A, Jin, Y, Wunderlich, B. Heat capacity measurement by modulated DSC at constant temperature. J Therm Anal. 1994;42:307330. .

  • 27. Genovese, A, Shanks, RA. Crystallization and melting of isotactic polypropylene in response to temperature modulation. J Therm Anal. 2004;75:223248. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 28. Di Lorenzo, ML, Pyda, M, Wunderlich, B. Reversible melting in nanophase-separated poly(oligoamide-alt-oligoether)s and its dependence on sequence length, crystal perfection, and molecular mobility. J Polym Sci B. 2001;39:29692981. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 29. Androsch, R, Wunderlich, B. Analysis of the degree of reversibility of crystallization and melting in poly(ethylene-co-1-octene). Macromolecules. 2000;33:90769089. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 30. Zhang, LL, Goh, SH, Lee, SY, Hee, GR. Miscibility, melting and crystallization behavior of two bacterial polyester/poly(epichlorohydrin-co-ethylene oxide) blend systems. Polymer. 2000;41:14291439. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 31. Gogolewski, S, Jovanovic, M, Perren, SM, Dillon, JG, Hughes, MK. Tissue response and in vivo degradation of selected polyhydroxyacids: polylactides (PLA), poly(3-hydroxybutyrate) (PHB), and poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHB/VA). J Biomed Mater Res. 1993;27:11351148. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 32. Qiu Z , Komura M, Ikehara T, Nishi T. DSC and TMDSC study of melting behaviour of poly(butylene succinate) and poly(ethylene succinate). Polymer. 2003;44:77815.

    • Search Google Scholar
    • Export Citation
  • 33. Liška, M, Černošek, Z, Chromčíková, M, Holubová, J, Černošková, E, Vozár, L. New features of the glass transition revealed by the StepScan® DSC. J Therm Anal Calorim. 2010;101:189194. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 34. Scherrenberg, R, Mathot, V, Hemelrjk, AV. The practical applicability of TMDSC to polymeric systems. Thermochim Acta. 1999;330:319. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 35. Garden, J, Richard, J, Saruyama, Y. Entropy production in TMDSC. J Therm Anal Calorim. 2008;94:585590. .

  • 36. Amarasinghe, G, Shanks, RA. TMDSC analysis of single-site copolymer blends after thermal fractionation. J Therm Anal. 2004;78:349361. .

    • Crossref
    • Search Google Scholar
    • Export Citation

Manuscript Submission: HERE

  • Impact Factor (2019): 2.731
  • Scimago Journal Rank (2019): 0.415
  • SJR Hirsch-Index (2019): 87
  • SJR Quartile Score (2019): Q3 Condensed Matter Physics
  • SJR Quartile Score (2019): Q3 Physical and Theoretical Chemistry
  • Impact Factor (2018): 2.471
  • Scimago Journal Rank (2018): 0.634
  • SJR Hirsch-Index (2018): 78
  • SJR Quartile Score (2018): Q2 Condensed Matter Physics
  • SJR Quartile Score (2018): Q2 Physical and Theoretical Chemistry

For subscription options, please visit the website of Springer.

Journal of Thermal Analysis and Calorimetry
Language English
Size A4
Year of
Foundation
1969
Volumes
per Year
4
Issues
per Year
24
Founder Akadémiai Kiadó
Founder's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Publisher Akadémiai Kiadó
Springer Nature Switzerland AG
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
CH-6330 Cham, Switzerland Gewerbestrasse 11.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 1388-6150 (Print)
ISSN 1588-2926 (Online)