View More View Less
  • 1 State Key Laboratory of Fire Science, University of Science and Technology of China, Hefei, Anhui, 230026, China
  • | 2 Jiangsu University Branch Center of State Key Lab of Urban Water Resource and Environment, Jiangsu University, Zhenjiang 212013, China
Restricted access

Abstract

In the article, the thermal oxidative degradation kinetics of pure polypropylene/aluminum trihydroxide (PP/ATH) and PP/ATH/organo Fe-montmorillonite (Fe-OMT) nanocomposites were investigated using Kissinger, Friedman and Flynn–Wall–Ozawa methods. The results showed that thermal oxidative degradation of PP/ATH/Fe-OMT nanocomposites to PP/ATH were complex reaction: the whole process of thermal oxidative degradation were composed with the decomposition of ATH, the cracking and charring of the backbone chains of PP, and the oxidative degradation of char, which the curses of energy mutative with the process of thermal oxidative degradation. The control steps were different in each degradation stage. The activation energy was high in the original degradation stage. It was due to the molecular structure and may closely relate with onset temperature. In the intermediate process, the activation energy was low. In the last stage of the degradation, the activation energy was graveled because the carbon may be oxidized. In the whole process of thermal oxidative degradation, the activation energy of PP/ATH/Fe-OMT nanocomposite was higher than that of PP/ATH.

  • 1. Ristolainen, N, Hippi, U, Seppala, J, Nykanen, A, Ruokolainen, J. Properties of polypropylene/aluminum trihydroxide composites containing nanosized organoclay. Poly Eng Sci. 2005;45: 12 15681575. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 2. Rothon R . The emergence of magnesium hydroxide as a fire retardant additive. In: The Plastic and Rubber Institute, editor. Flame Retardants 1990 Conference. London: Elsevier; 1990.

    • Search Google Scholar
    • Export Citation
  • 3. Tang, T, Chen, X, Chen, H, Meng, X, Jiang, Z, Bi, W. Catalyzing carbonization of polypropylene itself by supported nickel catalyst during combustion of polypropylene/clay nanocomposite for improving fire retardancy. Chem Mater. 2005;17:27992802. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 4. Gilman JW , Jackson CL, Morgan AB, Jr RH, Manias E, Giannelis EP, et al., Flammability properties of polymer-layered-silicate nanocomposites polypropylene and polystyrene nanocomposites. Chem Mater. 2000;12:18661873.

    • Search Google Scholar
    • Export Citation
  • 5. Kong, QH, Hu, Y, Song, L, Yi, CW. Synergistic flammability and thermal stability of polypropylene/aluminum trihydroxide/Fe-montmorillonite nanocomposites. Polym Adv Technol. 2009;20:404409. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 6. Opfermann, J. Kinetic analysis using multivariate non-linear regression. I. Basic concepts. J Therm Anal Calorim. 2000;60:641658. .

  • 7. Mamleev, V, Bourbigot, S, Le Bras, M, Duquesne, S, Sestak, J. Modelling of nonisothermal kinetics in thermogravimetry. Phys Chem Chem Phys. 2000;2: 20 47084716. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8. Mamleev, V, Bourbigot, S, Le Bras, M, Lefevbre, J. Three model-free methods for calculation of activation energy in TG. J Therm Anal Calorim. 2004;78: 3 10091027.

    • Search Google Scholar
    • Export Citation
  • 9. Opfermann, JR, Kaisersberger, E, Flammersheim, HJ. Model-free analysis of thermoanalytical data-advantages and limitations. Thermochim Acta. 2002;391: 1–2 117127.

    • Search Google Scholar
    • Export Citation
  • 10. Rose, N, Le Bras, M, Bourbigot, S, Delobel, R, Costes, B. Comprehensive study of the oxidative degradation of an epoxy resin using the degradation front model. Polym Degrad Stab. 1996;54: 2–3 355360. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11. Flynn JH . Polymer degradation. Handbook of thermal analysis and calorimetry, Amsterdam: Elsevier; 2002;3:587651.

  • 12. Kissinger, HE. Reaction kinetics in differential thermal analysis. Anal Chem. 1957;29:17021706. .

  • 13. Lomakin, SM, Dubnikova, IL, Shchegolikhin, AN, Zaikov, GE, Kozlowski, R, Kim, GM, Michler, GH. Thermal degradation and combustion behavior of the polyethylene/clay nanocomposite prepared by melt intercalation. J Therm Anal Calorim. 2008;94: 3 719726. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 14. Abate, L, Blanco, I, Bottino, FA, Di Pasquale, G, Fabbri, E, Orestano, A, Pollicino, A. Kinetic study of the thermal degradation of PS/MMT nanocomposites prepared with imidazolium surfactants. J Therm Anal Calorim. 2008;91: 3 681686. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15. Ozawa, T. A new method of analyzing thermogravimetric data. Bull Chem Soc Japan. 1965;38: 1 18811886. .

  • 16. Friedman, HL. Kinetics of thermal degradation of char-forming plastics from thermogravimetry: application to phenolic plastic. J Polym Sci Part C. 1964;6:183195.

    • Search Google Scholar
    • Export Citation
  • 17. Kong QH , Hu Y, Song L, Wang YL, Chen ZY, Wan WC. Influence of Fe-MMT on crosslinking and thermal degradation in silicone rubber/clay nanocomposites. Polym Adv Technol. 2006;17(6): 463467.

    • Search Google Scholar
    • Export Citation
  • 18. Zhu J , Uhl FM, Morgan AB, Wilkie CA. Studies on the mechanism by which the formation of nanocomposites enhances thermal stability. Chem Mater. 2001;13(12): 46494654.

    • Search Google Scholar
    • Export Citation
  • 19. Goodarzi, V, Jafari, SH, Khonakdar, HA, Monemian, SA, Mortazavi, M. An assessment of the role of morphology in thermal/thermo-oxidative degradation mechanism of PP/EVA/clay nanocomposites. Polym Degrad Stab. 2010;95: 5 859869. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 20. Wang, DY, Wang, YZ, Wang, JS, Chen, DQ, Zhou, Q, Yang, B, Li, WY. Thermal oxidative degradation behaviours of flame-retardant copolyesters containing phosphorous linked pendent group/montmorillonite nanocomposites. Polym Degrad Stab. 2005;87:171176. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 21. Vyazovkin, S, Dranca, I, Fan, XW, Advincula, R. Kinetics of the thermal and thermo-oxidative degradation of a polystyrene/clay nanocomposite. Macromol Rapid Comm. 2004;25: 3 498503. .

    • Crossref
    • Search Google Scholar
    • Export Citation

Manuscript Submission: HERE

  • Impact Factor (2019): 2.731
  • Scimago Journal Rank (2019): 0.415
  • SJR Hirsch-Index (2019): 87
  • SJR Quartile Score (2019): Q3 Condensed Matter Physics
  • SJR Quartile Score (2019): Q3 Physical and Theoretical Chemistry
  • Impact Factor (2018): 2.471
  • Scimago Journal Rank (2018): 0.634
  • SJR Hirsch-Index (2018): 78
  • SJR Quartile Score (2018): Q2 Condensed Matter Physics
  • SJR Quartile Score (2018): Q2 Physical and Theoretical Chemistry

For subscription options, please visit the website of Springer.

Journal of Thermal Analysis and Calorimetry
Language English
Size A4
Year of
Foundation
1969
Volumes
per Year
4
Issues
per Year
24
Founder Akadémiai Kiadó
Founder's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Publisher Akadémiai Kiadó
Springer Nature Switzerland AG
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
CH-6330 Cham, Switzerland Gewerbestrasse 11.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 1388-6150 (Print)
ISSN 1588-2926 (Online)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Apr 2021 1 0 0
May 2021 1 0 0
Jun 2021 0 0 0
Jul 2021 1 0 0
Aug 2021 0 0 0
Sep 2021 0 0 0
Oct 2021 0 0 0