View More View Less
  • 1 Department of Civil Engineering, McMaster University, Hamilton, ON, Canada
  • | 2 Institute for Research in Construction, National Research Council Canada, Ottawa, ON, Canada
Restricted access

Abstract

A laboratory study was undertaken to compare the performance of waste glass as a supplementary cementitious material (SCM) to traditional SCMs at the same particle size and level of replacement in both high and low alkali cement paste. The consumption of Ca(OH)2 as measured by differential thermal analysis (DTA) is used as an indicator of reactivity. The DTA results of the pastes aged to 150 days are presented, and indicate that glass reactivity is similar to ground-granulated blast furnace slag (GGBFS) and lower than silica fume (SF) at comparable particle sizes. Alkali–silica reaction (ASR) is not present for particle sizes below 100 μm, but is induced by agglomeration of the glass particles and is observed by fluorescence in optical microscopy images. Scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS) are used to compare the microstructural properties of the SCMs and measure the chemical composition of the reaction products. The alkalinity of the cement was found to influence the nature of composition as observed by thermal analysis, and the temperatures at which their reactions occurred.

  • 1. Dubovoy, VS, Gebler, SH, Klieger, P, Whiting, DA. Effects of ground granulated blast-furnace slag on some properties of pastes, mortars, and concretes Frohnsdorff, G, eds. Blended cements, ASTM STP 897. Philadelphia: American Society for Testing and Materials; 1986 2947. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 2. Hooton, RD. Permeability and pore structure of cement pastes containing fly ash, slag, and silica fume Frohnsdorff, G, eds. Blended cements, ASTM STP 897. Philadelphia: American Society for Testing and Materials; 1986 128143. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 3. Malhotra VM , Mehta PK. Pozzolanic and cementitious materials. In: Advance in concrete technology, chaps. 1, 4. New York: Gordon and Breach Publishers; 1996. p. 5, 11, 39.

    • Search Google Scholar
    • Export Citation
  • 4. Detwiler, RJ, Bhatty, JI, Bhattacharja, S. Supplementary cementing materials for use in blended cements. Skokie: Research and Development Bulletin RD112T Portland Cement Association; 1996.

    • Search Google Scholar
    • Export Citation
  • 5. Cook, DJ. Natural pozzolans Swamy, RN, eds. Cement replacement materials. 3 London: Surrey University Press; 1986 139.

  • 6. Rehan, R, Nehdi, M. Carbon dioxide emissions and climate change: policy implications for the cement industry. Environ Sci Policy. 2005;8:105114. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7. World Business Council for Sustainable Development. The Cement Sustainability Initiative. In: Cement Sustainability Initiative. World Business Council for Sustainable Development; 2002. http://www.wbcsd.org/DocRoot/1IBetslPgkEie83rTa0J/cement-action-plan.pdf. Accessed 1 Mar 2010.

    • Search Google Scholar
    • Export Citation
  • 8. Meyer, C, Baxter, S, Jin, W. Potential of waste glass for concrete masonry blocks Chong, KP, eds. Proceedings of the fourth materials engineering conference. Washington: American Society of Civil Engineering; 1996 666673.

    • Search Google Scholar
    • Export Citation
  • 9. Shao, Y, Lefort, T, Moras, S, Rodriguez, D. Studies on concrete containing ground waste glass. Cem Concr Res. 2000;30: 1 91100. .

  • 10. Shayan, A, Xu, A. Value-added utilization of waste glass in concrete. Cem Concr Res. 2004;34:8189. .

  • 11. Laldji, S, Tagnit-Hamou, A. Glass frit for concrete structures: a new, alternative cementitious material. Can J Civ Eng. 2007;34:793802. .

  • 12. Meyer C , Egosi N, Andela C. Concrete with waste glass as aggregate. In: Proceedings of the international symposium concrete technology unit of ASCE and University of Dundee, Dundee; 2001. p. 17987.

    • Search Google Scholar
    • Export Citation
  • 13. Polley, C, Cramer, SM, de la Cruz, RV. Potential for using waste glass in Portland cement concrete. J Mater Civ Eng. 1998;10:210219. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 14. Day, RL, Shi, C. Influence of the fineness of pozzolan on the strength of lime natural-pozzolan cement pastes. Cem Concr Res. 1994;24:14851491. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15. Shi, C, Day, RL. Comparison of different methods for enhancing reactivity of pozzolans. Cem Concr Res. 2001;31:813818. .

  • 16. Shi, C, Wu, Y, Riefler, C, Wang, H. Characteristics and pozzolanic reactivity of glass powders. Cem Concr Res. 2005;35:987993. .

  • 17. Schwarz, N, Neithalath, N. Influence of a fine glass powder on cement hydration: comparison to fly ash and modeling the degree of hydration. Cem Concr Compos. 2008;30:486496. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 18. Dyer, TD, Dhir, RK. Chemical reactions of glass cullet used as cement component. J Mater Civ Eng. 2001;13:412417. .

  • 19. Diamond, S, Thaulow, N. A study of expansion due to alkali–silica reaction as conditioned by the grain size of the reactive aggregate. Cem Concr Res. 1974;4:591607. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 20. Jin, W, Meyer, C, Baxter, S. “Glascrete”—concrete with glass aggregate. ACI Mater J. 2000;97:208213.

  • 21. Pike, RG, Hubbard, D, Insley, H. Mechanisms of alkali-aggregate reaction. ACI J Proc. 1955;52:1334.

  • 22. Tang, M-S, Xu, Z-Z, Han, S-F. Alkali reactivity of glass aggregate. Durab Build Mater. 1987;4:377385.

  • 23. Struble, LJ, Diamond, S. Swelling properties of synthetic alkali silica gels. J Am Ceram Soc. 1981;64: 11 652655. .

  • 24. Jin W . Alkali–silica reaction in concrete with glass aggregate—a chemo-physico-mechanical approach1. PhD thesis, Columbia University, New York; 1998.

    • Search Google Scholar
    • Export Citation
  • 25. Vessalas, K, Thomas, PS, Ray, AS, Guerbois, J-P, Joyce, P, Haggman, J. Pozzolanic reactivity of the supplementary cementitious material pitchstone fines by thermogravimetric analysis. J Therm Anal Calorim. 2009;97:7176. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 26. Kosmatka, SH, Kerkhoff, B, Panarese, WC, MacLeod, NF, McGrath, RJ. Design and control of concrete mixtures. 7 Ottawa: Cement Association of Ottawa; 2002.

    • Search Google Scholar
    • Export Citation
  • 27. Pane, I, Hansen, W. Investigation of blended cement hydration by isothermal calorimetry and thermal analysis. Cem Concr Res. 2005;35:11551164. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 28. Bhatty, JI. A review of the application of thermal analysis to cement-admixture systems. Thermochim Acta. 1991;189:313350. .

  • 29. Ramachandran, VS. Thermal analysis Ramachandran, VS, Beaudoin, JJ, eds. Handbook of analytical techniques in concrete science and technology. Park Ridge: Noyes Publications; 2001 127173. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 30. Wang, KS, Lin, KL, Lee, TY, Tzeng, BY. The hydration characteristics when C2S is present in MSWI fly ash slag. Cem Concr Compos. 2004;26:323330. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 31. Taylor, HFW. Cement chemistry. Toronto: Academic Press; 1990.

  • 32. El Elaouni, B, Benkaddour, M. Hydration of C3A in the presence of CaCO3. J Therm Anal. 1997;48:893901. .

  • 33. Alarcon-Ruiz, L, Platret, G, Massieu, E, Ehrlacher, A. The use of thermal analysis in assessing the effect of temperature on a cement paste. Cem Concr Res. 2005;35:609613. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 34. Marsh, BK, Day, RL, Bonner, DG. Strength gain and calcium hydroxide depletion in hardened cement pastes containing fly ash. Mag Concr Res. 1986;38:2329. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 35. Chaipanich, A, Nochaiya, T. Thermal analysis and microstructure of Portland cement–fly ash–silica fume pastes. J Therm Anal Calorim. 2010;99:487493. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 36. Ramachandran, VS, Paroli, RM, Beaudoin, JJ, Delgado, AH. Handbook of thermal analysis of construction materials. Norwich: William Andrew Publishing/Noyes; 2002.

    • Search Google Scholar
    • Export Citation
  • 37. Midgley, AJ. The determination of calcium hydroxide in set Portland cements. Cem Concr Res. 1979;9:7782. .

  • 38. Natesaiyer, K, Hover, KC. Insitu identification of ASR products in concrete. Cem Concr Res. 1988;18:455463. .

  • 39. ASTM International C856-04: standard practice for petrographic examination of hardened concrete. West Conshohocken: ASTM International; 2004.

    • Search Google Scholar
    • Export Citation
  • 40. Suwito, A, Jin, W, Xi, Y, Meyer, C. A mathematical model for the pessimum size effect of ASR in concrete. Concr Sci Eng. 2002;4:2334.

    • Search Google Scholar
    • Export Citation
  • 41. Prezzi, M, Monteiro, PJM, Sposito, G. Alkali–silica reaction—part 2: the effect of chemical admixtures. ACI Mater J. 1998;95:310.

    • Search Google Scholar
    • Export Citation
  • 42. Urhan, S. Alkali silica and pozzolanic reactions in concrete. Part 1: interpretation of published results and an hypothesis concerning the mechanism. Cem Concr Res. 1987;17:141152. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 43. Diamond, S., Chemistry and other characteristics of ASR gels. In: Proceedings of the 11th international conference on alkali-aggregate reaction, Quebec; 2000. p. 319.

    • Search Google Scholar
    • Export Citation
  • 44. Scrivener, KL, Monteiro, PJM. The alkali–silica reaction in a monolithic opal. J Am Ceram Soc. 1994;77:28492856. .

  • 45. Diamond, S, Sahu, S, Thaulow, N. Reaction products of densified silica fume agglomerates in concrete. Cem Concr Res. 2004;34:16251632. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 46. Dhir, RK. Pulverized-fuel ash Swamy, RN, eds. Concrete technology and design volume 3, cement replacement material. Glasgow: Surrey University Press; 1986 197255.

    • Search Google Scholar
    • Export Citation
  • 47. Mehta, PK. Influence of fly ash characteristics on the strength of Portland–fly ash mixtures. Cem Concr Res. 1985;15:669674. .

  • 48. Pal, SC, Mukherjee, A, Pathak, SR. Investigation of hydraulic activity of ground granulated blast furnace slag in concrete. Cem Concr Res. 2003;33:14811486. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 49. Shi, C. Steel slag—its production, processing, characteristics, and cementitious properties. J Mater Civ Eng. 2004;16:230236. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 50. Lawrence, P, Cyr, M, Ringot, E. Mineral admixtures in mortars effect of type, amount, and fineness of fine constituents on compressive strength. Cem Concr Res. 2005;35:10921105. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 51. Diamond, S. Alkali silica reactions—some paradoxes. Cem Concr Compos. 1997;19:391401. .

  • 52. Garci Jeunger, MC, Jennings, HM. Effects of high alkalinity on cement pastes 98-M28. ACI Mater J. 2001;98:251255.

Manuscript Submission: HERE

  • Impact Factor (2019): 2.731
  • Scimago Journal Rank (2019): 0.415
  • SJR Hirsch-Index (2019): 87
  • SJR Quartile Score (2019): Q3 Condensed Matter Physics
  • SJR Quartile Score (2019): Q3 Physical and Theoretical Chemistry
  • Impact Factor (2018): 2.471
  • Scimago Journal Rank (2018): 0.634
  • SJR Hirsch-Index (2018): 78
  • SJR Quartile Score (2018): Q2 Condensed Matter Physics
  • SJR Quartile Score (2018): Q2 Physical and Theoretical Chemistry

For subscription options, please visit the website of Springer.

Journal of Thermal Analysis and Calorimetry
Language English
Size A4
Year of
Foundation
1969
Volumes
per Year
4
Issues
per Year
24
Founder Akadémiai Kiadó
Founder's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Publisher Akadémiai Kiadó
Springer Nature Switzerland AG
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
CH-6330 Cham, Switzerland Gewerbestrasse 11.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 1388-6150 (Print)
ISSN 1588-2926 (Online)