View More View Less
  • 1 Nano-Structured Materials Division, Central Glass and Ceramic Research Institute, CSIR, Kolkata 700032, India
  • | 2 Defence Metallurgical Research Laboratory, Hyderabad 500058, India
Restricted access

Abstract

This paper reports preparation of nanoparticles of oxides by the citrate–nitrate process and the effect of metal ions on the thermal decomposition characteristics of the corresponding citrate–nitrate gel precursors. In order to understand the effect of metal ions on the thermal decomposition characteristics of the precursors, we have prepared a series of single component oxides such as MO, where M = Zn, MO2, where M = Sn, Ce, Zr, and M2O3 where M = Al, Fe, Bi. In all the cases the citrate to nitrate ratio was fixed at 0.3. In order to ascertain the decomposition characteristics of the gel samples, TG/DTA studies were performed on the dried gel samples. After complete physico-chemical characterization of the precursors and the calcined products, it could be concluded that the nature of decomposition of the precursors depends largely on the nature of the metal ions. Finally, the advantages of the citrate–nitrate process such as its high degree of reproducibility, its potential for large-scale production of nano-crystalline ceramic oxide powders and its lower cost could be established based on a series of experiments and examples.

  • 1. Li, Wei. Facile synthesis of monodisperse Bi2O3 nanoparticles. Mater Chem Phys. 2006;99:174 .

  • 2. Jungk, H-O, Feldmann, C. Ployol mediated synthesis of sub-micrometer Bi2O3 particles. J Mater Sci. 2001;36:297300. .

  • 3. Liang, J, Jiang, X, Liu, G, Deng, Z, Zhuang, J, Li, F, Li, Y. Characterization and synthesis of pure ZrO2 nanopowders via sonochemical method. Mater Res Bull. 2003;38:161168. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 4. Cheng, H, Wu, L, Ma, J, Zhao, Z, Qi, L. Hydrothermal preparation of nanosized cubic ZrO2 powders. J Mater Sci Lett. 1996;15:895897. .

  • 5. Prasad, V, Souza, C-D, Yadav, D, Shaikh, A-J, Vigneshwaran, N. Spectroscopic characterization of zinc oxide nanorods synthesized by solid-state reaction. Spectrochim Acta A. 2006;65:173 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 6. Liu, B, Zeng, H-C. Hydrothermal synthesis of ZnO nanorods in the diameter regime of 50nm. J Am Chem Soc. 2003;125:44304431. .

  • 7. Li, Y, Liao, H, Qian, Y. Hydrothermal synthesis of ultrafine α-Fe2O3 and Fe3O4 powders. Mater Res Bull. 1998;33:841844. .

  • 8. Li, Y-S, Li, G, Wang, S-X, Gao, H, Tan, Z-C. Preparation and characterization of nano-ZnO flakes prepared by reactive ion exchange method. J Therm Anal Calorim. 2009;95:671674. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 9. Raming, T-P, Winnubst, A-J-A, Kats, C-M-V, Philipse, A-P. The synthesis and magnetic properties of nanosized hematite (α-Fe2O3) particles. J Coll Interface Sci. 2002;249:346350. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10. He, Y, Yang, B, Cheng, G. Controlled synthesis of CeO2 nanoparticles from the coupling route of homogenous precipitation with microemulsion. Mater Lett. 2003;57:18801884. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11. Zhang, D, Fu, H, Shi, L, Pan, C, Li, Q, Chu, Y, Yu, W. Synthesis of CeO2 nanorods via ultrasonication assisted by polyethylene glycol. Inorg Chem. 2007;46:24462451. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 12. Fraigi, L, Lamas, D-G, Walsoe de Reca, N-E. Novel method to prepare nanocrystalline SnO2 powders by a gel-combustion process. Nanostruct Mater. 1999;11:311316. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13. Bhagwat, M, Shah, P, Ramaswamy, V. Synthesis of nanocrystalline SnO2 powder by amorphous citrate route. Mater Lett. 2003;57:16041611. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 14. Yoldas, B-E. Thermal stabilization of an active alumina and effect of dopants on the surface area. J Mater Sci. 1976;11:465470. .

  • 15. Jain, S-R, Adiga, K-C, Pai Vernekar, V-R. A new approach to thermochemical calculations of condensed fuel-oxidizer mixtures. Combust Flame. 1981;40:7179. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 16. Sousa, V-C, Segadaes, A-M, Morelli, M-R, Kiminami, RHGA. Combustion synthesized powders for varistor ceramics. Int J Inorg Mater. 1999;1:235241. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 17. Stefanescu, M, Stoia, M, Caizer, C, Dippong, T, Barvinschi, P. Preparation of CoxFe3−xO4 nanoparticles by thermal decomposition of some organo-metallic precursors. J Therm Anal Calorim. 2009;97:245250. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 18. Thomas, P, Dwarakanath, K, Varma, K-B-R, Kutty, T-R-N. Synthesis of nanoparticles of the giant dielectric material, CaCu3Ti4O12 from a precursor route. J Therm Anal Calorim. 2009;95:267272. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19. Sharma, P-K, Varadan, V-V, Varadan, V. K. A critical role of pH in the colloidal synthesis and phase transformation of nano size α-Al2O3 with high surface area. J Eur Ceram Soc. 2003;23:659666. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 20. Waqas, H, Qureshi, A-H. Low temperature sintering study of nanosized Mn–Zn ferrites synthesized by sol–gel auto combustion process. J Therm Anal Calorim. 2010;100:529535. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 21. Lanos, R, Lazău, L, Păcurariu, C. Metal nitrate/fuel mixture reactivity and its influence on the solution combustion synthesis of γ-LiAlO2. J Therm Anal Calorim. 2009;97:209214. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 22. Prakash, A-S, Khadar, A-M-A, Patil, K-C, Hegde, M-S. Hexamethylenetetramine: a new fuel for solution combustion synthesis of complex metal oxides. J Mater Syn Process. 2010;10:135141. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 23. Chen, Z, Yan, Y. Nano-sized PDP phosphors prepared by solution combustion method. J Mater Sci. 2006;41:57935796. .

  • 24. Benjaram, M-R, Gunugunuri, K-R, Ganesh, I, Ferreira, J-M-F. Single step synthesis of nanosized CeO2–MxOy mixed oxides (MxOy=SiO2, TiO2, ZrO2, and Al2O3) by microwave induced solution combustion synthesis: characterization and CO oxidation. J Mater Sci. 2009;44:27432751. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 25. Shivakumara, C, Manjunath, B-B. Synthesis, structural and ferromagnetic properties of La1−xKxMnO3 (0.0≤x≤0.25) phases by solution combustion method. Bull Mater Sci. 2009;32:443449. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 26. Bluthardt, C, Fink, C, Flick, K, Hagemeyer, A, Schlichter, M, A Volpe Jr. Aqueous synthesis of high surface area metal oxides. Catal Today. 2008;137:132143. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 27. Mokkelbost, T, Kaus, I, Grande, T, Einarsrud, M-A. Combustion synthesis and characterization of nanocrystalline CeO2-based powders. Chem Mater. 2004;16:54895494. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 28. Nordahl, C-S, Messing, G-L. Sintering of α-Al2O3-seeded nanocrystalline γ-Al2O3 powders. J Eur Ceram Soc. 2002;22:415422. .

  • 29. Patil, K-C, Aruna, S-T, Mimani, T. Combustion synthesis: an update. Curr Opin Solid State Mater Sci. 2002;6:507512. .

  • 30. Devi, P-S, Maiti, H-S. A novel autoignited combustion process for the synthesis of Bi–Pb–Sr–Ca–Cu–O superconductors with a Tc (0) of 125K. J Solid State Chem. 1994;109:3542. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 31. Chakraborty, A, Devi, P-S, Maiti, H-S. Low temperature synthesis and some physical properties of barium-substituted lanthanum manganite (La1-x BaxMnO3). J Mater Res. 1995;10:918925. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 32. Chakraborty, A, Devi, P-S, Roy, S, Maiti, H-S. Low-temperature synthesis of ultrafine La0.84Sr0.16MnO3 powder by an autoignition process. J Mater Res. 1994;9:986991. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 33. Basu, S, Devi, P-S, Maiti, H-S. Nb-doped La2Mo2O9: a new material with high ionic conductivity. J Electro Chem Soc. 2005;152:A2143A2147. .

  • 34. Basu, S, Chakraborty, A, Devi, P-S, Maiti, H-S. Electrical conduction in nano-structured La0.9Sr0.1Al0.85Co0.05Mg0.1O3 perovskite oxide. J Am Ceram Soc. 2005;88:21102113. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 35. Kumar, A, Devi, P-S, Maiti, H-S. Effect of metal ion concentration on synthesis and properties of La0.84Sr0.16MnO3 cathode material. J Power Sources. 2006;161:7986. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 36. Basu, S, Devi, P-S, Maiti, H-S. Synthesis and properties of nanocrystalline ceria powders. J Mater Res. 2004;19:31623171. .

  • 37. Banerjee, S, Devi, P-S. Effect of citrate to nitrate ratio on the decomposition characteristics and phase formation of alumina. J Therm Anal Calorim. 2007;90:699706. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 38. Banerjee, S, Devi, P-S. Sinter-active nanocrystalline CeO2 powder prepared by a mixed fuel process: effect of fuel on particle agglomeration. J Nanopart Res. 2007;9:1097 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 39. Hwang, C-C, Wu, T-Y, Wan, J, Tsai, J-S. Development of a novel combustion synthesis method for synthesizing of ceramic oxide powders. Mater Sci Eng B. 2004;111:49 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 40. Chick, L-A, Pederson, L-R, Maupin, G-D, Bates, J-L, Thomas, L-E, Exarhos, G-J. Glycine–nitrate combustion synthesis of oxide ceramic powders. Mater Lett. 1990;10:612. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 41. Purohit, R-D, Saha, S, Tyagi, A-K. Nanocrystalline thoria powders via glycine–nitrate combustion. J Nucl Mater. 2001;288:710. .

  • 42. Devi, P-S, Rao, M-S. Rare-earth chromium citrates as precursors for rare-earth chromites: lanthanum biscitrato chromium(III) dihydrate. La[Cr(C6H5O7)2]·2H. Thermochim Acta. 1989;153:181 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 43. Devi, P-S, Rao, M-S. A comparative study on the thermal decomposition of lanthanide biscitrato chromate(III) hydrates, Ln[CrC6(H5O7)2]·nH2O. J Therm Anal. 1997;48:909916. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 44. Chandradass, J, Kim, K-H. Effect of acidity on the citrate-nitrate combustion synthesis of alumina–zirconia composite powder. Met Mater Inter. 2010;15:10391043. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 45. Matraszek A , Radominska E, Szczygiel I. Modified Pechini synthesis of La, Ce, and Pr orthophosphates and characterization of obtained powders. J Therm Anal Calorim. 2010; . Online First™.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 46. Pinheiro da Silva, M-F, de Souza Carvalho, F-M, da Silva Martins, T, de Abreu Fantini, M-C, Isolani, P-C. The role of citrate precursors on the morphology of lanthanide oxides obtained by thermal decomposition. J Therm Anal Calorim. 2010;99:385390. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 47. Pinheiro da Silva, M-F, Soeira, L-S, Daghastanli, K-R-P, Martins, T-S, Cuccovia, I-M, Freire, R-S, Isolani, P-C. CeO2-catalyzed ozonation of phenol, the role of cerium citrate as precursor of CeO2. J Therm Anal Calorim. 2010;102:907913. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 48. Wyrzykowski D , Hebanowska E, Nowak-Wiczk G, Makowski M, Chmurzyński L. Thermal behaviour of citric acid and isomeric aconitic acids. J Therm Anal Calorim. 2010; . Online First™.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 49. Bahadur, D, Rajakumar, S, Kumar, A. Influence of fuel ratios on auto combustion synthesis of barium ferritenano particles. J Chem Sci. 2006;118:1521. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 50. Purohit, R-D, Tyagi, A-K. Auto-ignition synthesis of nanocrystalline BaTi4O9 powder. J Mater Chem. 2002;12:312316. .

  • 51. Lide D-R . CRC Hand book of chemistry and physics. 75th ed. USA: CRC Press; 1994. p. 191395.

Manuscript Submission: HERE

  • Impact Factor (2019): 2.731
  • Scimago Journal Rank (2019): 0.415
  • SJR Hirsch-Index (2019): 87
  • SJR Quartile Score (2019): Q3 Condensed Matter Physics
  • SJR Quartile Score (2019): Q3 Physical and Theoretical Chemistry
  • Impact Factor (2018): 2.471
  • Scimago Journal Rank (2018): 0.634
  • SJR Hirsch-Index (2018): 78
  • SJR Quartile Score (2018): Q2 Condensed Matter Physics
  • SJR Quartile Score (2018): Q2 Physical and Theoretical Chemistry

For subscription options, please visit the website of Springer.

Journal of Thermal Analysis and Calorimetry
Language English
Size A4
Year of
Foundation
1969
Volumes
per Year
4
Issues
per Year
24
Founder Akadémiai Kiadó
Founder's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Publisher Akadémiai Kiadó
Springer Nature Switzerland AG
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
CH-6330 Cham, Switzerland Gewerbestrasse 11.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 1388-6150 (Print)
ISSN 1588-2926 (Online)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Jun 2021 3 0 0
Jul 2021 1 0 0
Aug 2021 4 0 0
Sep 2021 6 0 0
Oct 2021 2 0 0
Nov 2021 2 1 1
Dec 2021 0 0 0