View More View Less
  • 1 Department of Chemistry, Goa University, Taleigao Plateau, Goa 403206, India
  • | 2 Department of Chemical Technologies and Environment, Faculty of Industrial Technologies, Trencin University of A. Dubcek, Puchov, Slovakia
  • | 3 University of New Brunswick, Saint John, NB, E2L 4L5, Canada
Restricted access

Abstract

Ni0.6Zn0.4Fe2O4 nano-particles have been synthesized by self-propagating auto-combustion of nickel zinc ferrous fumarato-hydrazinate complex. The precursor complex has been characterized by chemical analysis, IR, AAS, thermal analysis and isothermal mass loss studies. The precursor on ignition undergoes self-propagating auto combustion to give Ni0.6Zn0.4Fe2O4. The X-ray diffraction studies confirmed the single phase formation of nano-size ‘as synthesized’ Ni0.6Zn0.4Fe2O4. TEM observation showed the average particle size to be 20 nm. Infrared and magnetization studies were also carried out on the ‘as synthesized’ Ni0.6Zn0.4Fe2O4. The lower value of saturation magnetization and higher Curie temperature of ‘as synthesized’ ferrite also hint at the nano size nature.

  • 1. Komarneni S , Fregeau E, Breval E, Roy R. Hydrothermal preparation of ultrafine ferrites and their sintering. J Am Ceram Soc. 1988;71(1)C:268.

    • Search Google Scholar
    • Export Citation
  • 2. Shrotri, JJ, Kulkarni, SD, Deshpande, CE, Date, SK. Low temperature synthesis of Ni–Zn ferrite powder and its characterization. Mater Lett. 1996;27:293296. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 3. Jadhav, SS, Shirsath, SE, Toksha, BG, Shukla, SJ, Jadhav, KM. Effect of cation proportion on the structural and magnetic properties of Ni–Zn Ferrites nano-size particles prepared by co-precipitation technique. Chin J Chem Phys. 2008;21: 4 381386. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 4. Bueno, AR, Gregori, ML, Nobrega, MCS. Effect of Mn substitution on the microstructure and magnetic properties of Ni0.50−xZn0.50−xMn2xFe2O4 ferrite prepared by the citrate-nitrate precursor method. Mater Chem Phys. 2007;105:229233. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 5. Tartaj, P, Morales, MDP, Veintemillas-Verdaguer, S, Gonzáalez-Carreño, T, Serna, CJ. The preparation of magnetic nanoparticles for applications in biomedicine. J Phys D. 2003;36R:182197. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 6. Hankare, PP, Kamle, PD, Kadam, MR, Rane, KS, Vasambekar, PN. Effect of sintering temperature on the properties of Cu-Co ferrites prepared by oxalate precipitation method. Mater Lett. 2007;61:27692771. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7. Randhawa, BS, Kaur, M, Gandotra, K. Mössbauer studies on the thermolysis of manganese tris(malonato)ferrate(III)hexahydrate. J Radioanal Nucl Chem. 2006;269: 3 6974. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8. Parvatheeawara Rao, B, Mahesh Kumar, A, Rao, KH, Murthy, YLN, Caltun, OF, Dumitru, I, Spinu, L. Synthesis and magnetic studies of Ni–Zn ferrite nanoparticles. J Optoelectron Adv Mater. 2006;8: 5 17031705.

    • Search Google Scholar
    • Export Citation
  • 9. Verma, A, Goel, TC, Mendiratta, RG, Kishan, P. Magnetic properties of nickel–zinc ferrites prepared by the citrate precursor method. J Magn Magn Mater. 2000;208: 1 1319. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10. Zahi, S, Hashim, M, Daud, AR. Synthesis, magnetic properties and microstructure of Ni–Zn ferrite by sol–gel technique. J Magn Magn Mater. 2007;308: 2 177182. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11. Costa, ACFM, Tortella, E, Morelli, MR, Kiminami, RHGA. Synthesis, microstructure and magnetic properties of Ni–Zn ferrites. J Magn Magn Mater. 2003;256: 1–3 174182. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 12. Kikukawa, N, Takemori, M, Nagano, Y, Sagasawa, M, Kobayashi, S. Synthesis and magnetic properties of nanostructured spinel ferrites using a glycine–nitrate process. J Magn Magn Mater. 2004;284:206214. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13. Priyadharsini, P, Pradeep, A, Chandrasekaran, G. Novel combustion route of synthesis and characterization of nanocrystalline mixed ferrites of Ni–Zn. J Magn Magn Mater. 2009;321: 12 031898. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 14. Mangalaraja, RV, Ananthakumar, S, Manohar, P, Gnanam, FD, Awano, M. Microwave-flash combustion synthesis of Ni0.8Zn0.2Fe2O4 and its dielectric characterization. Mater Lett. 2004;58: 10 15931596. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15. Carp, O, Patron, L, Pascu, G, Mindru, L, Stanica, N. Thermal investigations of nickel–zinc ferrites formation from malate coordination compounds. J Therm Anal Calorim. 2006;84: 2 391394. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 16. Gajapathy, D, Patil, KC, Pai Vernekar, VR. Low temperature ferrite formation using metal oxalate hydrazinate precursor. Mater Res Bull. 1982;17: 1 2932. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 17. Randhawa, BS, Kaur, S, Bassi, PS. Thermal decomposition of strontium and barium malonates. J Therm Anal Calorim. 1999;55: 3 789796. .

  • 18. Mahesh, GV, Patil, KC. Thermal reactivity of metal acetate hydrazinates. Thermochim Acta. 1986;99: 1 153158. .

  • 19. Randhawa, BS, Dosanjh, HS, Kumar, N. Synthesis of potassium ferrite by precursor and combustion methods a comparative study. J Therm Anal Calorim. 1999;95: 1 7580. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 20. Sivasankar, BN. Cobalt(II), nickel(II) and zinc(II) dicarboxylate complexes with hydrazine as bridged ligand characterization and thermal degradation. J Therm Anal Calorim. 2006;86: 2 385392. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 21. Sivasankar, BN, Govindarajan, S. Studies on bis(hydrazine) metal malonates and succinates. Synth React Inorg Met-Org Chem. 1994;24: 9 15731582. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 22. Sivasankar, BN, Govindarajan, S. Hydrazine mixed metal malonates—new precursors for metal cobaltites. Mater Res Bull. 1996;31: 1 4754. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 23. Verenkar, VMS, Porob, RA, Sawant, SY, Kannan, KR. Synthesis, characterisation and thermal analysis of nickel manganese succinato-hydrazinate Singh Mudher, KD, Bharadwaj, S, Ravindran, PV, Sali, SK, Venugopal, V, eds. Proceedings of the 14th national symposium on thermal analysis, Thermans. Vadodara: Indian Thermal Analysis Society; 2004 335337.

    • Search Google Scholar
    • Export Citation
  • 24. Sivasankar, BN, Govindrajan, S. Acetate and malonate complexes of cobalt(II), nickel(II) and zinc(II) with hydrazinium cation: preparation, spectral and thermal studies. J Therm Anal. 1997;48: 6 14011413. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 25. Rane, KS, Verenkar, VMS. Synthesis of ferrite grade γ-Fe2O3. Bull Mater Sci. 2001;24: 1 3945. .

  • 26. Randhawa, BS, Kaur, M. A comparative study on the thermal decomposition of some transition metal maleates and fumarates. J Therm Anal Calorim. 2007;89: 1 251255. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 27. Khalil, I, Petit-Ramel, MM. Polynuclear complexes quantitative and qualitative study of copper-yttrium malate and copper-uranyl malate. J Inorg Nucl Chem. 1979;41: 5 711716. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 28. Gawas, UB, Mojumdar, SC, Verenkar, VMS. Ni0.5Mn0.1Zn0.4Fe2(C4H2O4)3·6N2H4 precursor Ni0.5Mn0.1Zn0.4Fe2O4 nanoparticles preparation, IR spectral, XRD, SEM-EDS and thermal analysis. J Therm Anal Calorim. 2009;96: 1 4952. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 29. Gonsalves, LR, Verenkar, VMS, Mojumdar, SC. Preparation and characterization of Co0.5Zn0.5Fe2(C4H2O4)3·6N2H4: a precursor to prepare Co0.5Zn0.5Fe2O4 nanoparticles. J Therm Anal Calorim. 2009;96: 1 5357. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 30. More, A, Verenkar, VMS, Mojumdar, SC. Nickel ferrite nanoparticles synthesis from novel fumarato-hydrazinate precursor. J Therm Anal Calorim. 2008;94: 1 6367. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 31. Sawant, SY, Verenkar, VMS, Mojumdar, SC. Preparation, thermal, XRD, chemical and FTIR spectral analysis of NiMn2O4 nanoparticles and respective precursor. J Therm Anal Calorim. 2007;90: 3 669672. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 32. Porob, RA, Khan, SZ, Mojumdar, SC, Verenkar, VMS. Synthesis, TG, DSC and infrared spectral study of NiMn2(C4H4O4)3·6N2H4: a precursor for NiMn2O4 nanoparticles. J Therm Anal Calorim. 2006;86: 3 605608. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 33. Gawas U , Bhattacharya S, More A, Verenkar VMS. Synthesis and characterization of Ni0.6Zn0.4Fe2O4 obtained by self-propagating auto-combustion of a novel precursor. In: Lokhande CD, editor. Proceedings of the international conference on advanced materials and applications. Kolhapur, India; 2007. p. 8693.

    • Search Google Scholar
    • Export Citation
  • 34. Gawas UB , Verenkar VMS. Synthesis, characterizations, thermal and infrared spectral studies of manganese nickel zinc ferrous fumarato-hydrazinate complex. In: Kalsi PC, Pai RV, Pai MR, Bharadwaj SR, Venugopal V, editors. Proceedings of the 17th national symposium on thermal analysis, Thermans. Haryana: Indian Thermal Analysis Society; 2010. p. 1746.

    • Search Google Scholar
    • Export Citation
  • 35. Vogel’s, Text book of quantitative inorganic analysis. (revised by Jeffery GH, Bassettv, Mendham J, and Denney RC), 5th edn. London: Longman; 1989. p. 402.

    • Search Google Scholar
    • Export Citation
  • 36. Likhite, SD, Radhakrishnamurthy, C, Sahasrabudhe, PW. Alternating current electromagnet type hysteresis loop tracer for minerals and rocks. Rev Sci Instrum. 1965;36: 11 15581560. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 37. Likhite, SD, Radhakrishnamurthy, C. Initial susceptibility and constricted Rayleigh loops of some basalts. Curr Sci. 1966;35:534536.

    • Search Google Scholar
    • Export Citation
  • 38. Braibanti, A, Dallavalle, F, Pellinghelli, MA, Leporati, E. 1968 The nitrogen–nitrogen stretching band in hydrazine derivatives and complexes. Inorg. Chem. 7:14301433. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 39. Tsuchiya, R, Yonemura, M, Uehera, A, Kyuno, E. Derivatographic studies on transition metal complexes. XIII. Thermal decomposition of [Ni(N2H4)6]X2 complexes. Bull Chem Soc Jpn. 1974;47: 3 660664. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 40. Nakamoto, K. Infrared and Raman spectra of inorganic and coordination compounds part B. 6 New York: John Wiley; 1978 13.

  • 41. Waldron, RD. Infrared spectra of ferrites. Phys Rev. 1955;99:17271735. .

  • 42. Akther Hossain, AKM, Mahmud, ST, Seki, M, Kawai, T, Tabata, H. Structural, electrical transport, and magnetic properties of Ni1−xZnxFe2O4. J Magn Magn Mater. 2007;312: 1 210219. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 43. Mangalaraja, RV, Ananthakumar, S, Manohar, P, Gnanam, FD, Awano, M. Direct current resistivity studies of Ni1−xZnxFe2O4 prepared through flash combustion and citrate-gel decomposition techniques. Mater Lett. 2003;57: 18 26622665. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 44. Coey, JMD, Khalafalla, D. Superparamagnetic γ-Fe2O3. Phys Stat Sol (A). 1972;11: 1 229241. .

Manuscript Submission: HERE

  • Impact Factor (2019): 2.731
  • Scimago Journal Rank (2019): 0.415
  • SJR Hirsch-Index (2019): 87
  • SJR Quartile Score (2019): Q3 Condensed Matter Physics
  • SJR Quartile Score (2019): Q3 Physical and Theoretical Chemistry
  • Impact Factor (2018): 2.471
  • Scimago Journal Rank (2018): 0.634
  • SJR Hirsch-Index (2018): 78
  • SJR Quartile Score (2018): Q2 Condensed Matter Physics
  • SJR Quartile Score (2018): Q2 Physical and Theoretical Chemistry

For subscription options, please visit the website of Springer.

Journal of Thermal Analysis and Calorimetry
Language English
Size A4
Year of
Foundation
1969
Volumes
per Year
4
Issues
per Year
24
Founder Akadémiai Kiadó
Founder's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Publisher Akadémiai Kiadó
Springer Nature Switzerland AG
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
CH-6330 Cham, Switzerland Gewerbestrasse 11.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 1388-6150 (Print)
ISSN 1588-2926 (Online)