View More View Less
  • 1 Institute of Chemistry, Faculty of Science, P. J. Šafárik University, Moyzesova 11, 041 54, Košice, Slovak Republic
  • | 2 Department of Physics, Electrotechnical Faculty, Technical University, Letná 9, 042 00, Košice, Slovak Republic
  • | 3 Institute of Geotechnics, Slovak Academy of Sciences, Watsonova 45, 043 53, Košice, Slovak Republic
  • | 4 Department of Engineering, University of New Brunswick, Saint John, NB, E2L 4L5, Canada
  • | 5 Department of Chemical and Biochemical Engineering, The University of Western Ontario, London, ON, N6A 5B9, Canada
  • | 6 Department of Chemistry and Technology of Inorganic Materials, Faculty of Industrial Technologies, Trenčín University of Alexander Dubček, 02032, Púchov, Slovak Republic
Restricted access

Abstract

Sorption of hazardous pyridine derivates by copper forms of synthetic zeolite ZSM5 and natural zeolite of the clinoptilolite type (CT) has been investigated. Sorption of 2-chloropyridine (clpy) and 2-ethylpyridine (ethylpy) from liquid and gas phase by copper forms of zeolites (Cu-ZSM5 and Cu-CT) has been studied by CHN analysis, thermal (TG, DTG and DTA) analysis, FTIR spectroscopy, X-ray powder diffractometry and determination of the surface areas and the pore volumes by low-temperature adsorption of nitrogen. The results of thermal analyses of Cu-ZSM5, Cu-(clpy)x-ZSM5, Cu-(ethylpy)x-ZSM5, Cu-CT, Cu-(clpy)x-CT and Cu-(ethylpy)x-CT zeolitic products with different composition (x depends on the experimental conditions of sorption of pyridine derivates) clearly confirmed their different thermal properties and the sorption of pyridine derivates. The main part of the decomposition process of zeolitic samples containing pyridine derivates occurs at considerably higher temperatures than the boiling point of pyridine derivates proving strong bond and irreversibility of clpy- and/or ethylpy–zeolite interaction. FTIR spectra showed well-resolved bands for pyridine derivates in the Cu-(clpy)x-zeolite and Cu-(ethylpy)x-zeolite. Surface area and pore volumes of the samples Cu-clpy-ZSM5, Cu-ethylpy-ZSM5, Cu-clpy-CT and Cu-ethylpy-CT in comparison with Cu-ZSM5 and Cu-CT decreased due to the adsorption of pyridine derivates.

  • 1. Reháková M , Fortunová L’, Bastl Z, Nagyová S, Čuvanová S, Jorík V, Jóna E. Removal of pyridine from liquid and gas phase by copper forms of natural and synthetic zeolites. J Hazard Mater. 2010. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 2. Reháková, M, Wadsten, T, Nagyová, S, Bastl, Z, Briančin, J. Study of copper forms of synthetic zeolite ZSM5 containing ethylenediamine. J Incl Phenom. 2001;39:181186. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 3. Čuvanová, S, Reháková, M, Finocchiaro, P, Pollicino, A, Bastl, Z, Nagyová, S, Fajnor, . Thermochemical properties of copper forms of zeolite ZSM5 containing dimethylethylenediamine. Thermochim Acta. 2007;452:1319. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 4. Vlastos, D, Skoutelis, CG, Theodoridis, IT, Stapleton, DR, Papadaki, MI. Genotoxicity study of photolytically treated 2-chloropyridine aqueous solutions. J Hazard Mater. 2010;177:892898. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 5. Stapleton, DR, Konstantinou, IK, Hela, DG, Papadaki, M. Photolytic removal and mineralisation of 2-halogenated pyridines. Water Res. 2009;43:39643973. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 6. Stapleton, DR, Konstantinou, IK, Karakitsou, A, Hela, DG, Papadaki, M. Hydroxypyridine photolytic destruction by 254nm UV irradiation at different conditions. Chemosphere. 2009;77:10991105. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7. Qiao, L, Wang, J. Microbial degradation of pyridine by Paracoccus sp isolated from contaminated soil. J Hazard Mater. 2010;176:220225. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8. Li, J, Cai, W, Cai, J. The characteristics and mechanisms of pyridine biodegradation by Streptomyces sp. J Hazard Mater. 2009;165:950954. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 9. Zhang, C, Li, M, Liu, G, Luo, H, Zhang, R. Pyridine degradation in the microbial fuel cells. J Hazard Mater. 2009;172:465471. .

  • 10. Lee, JJ, Rhee, SK, Lee, ST. Degradation of 3-methylpyridine and 3-ethylpyridine by Gordonia nitida LE31. Appl Environ Micorbiol. 2001;67:43424345. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11. O’Loughlin, EJ, Sims, GK, Traina, SJ. Biodegradation of 2-methyl, 2-ethyl, and 2-hydroxypyridine by an Arthrobacter sp isolated from subsurface sediment. Biodegradation. 1999;10:93104. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 12. Mohan, D, Singh, KP, Sinha, S, Gosh, D. Removal of pyridine derivatives from aqueous solution by activated carbons developed from agricultural waste materials. Carbon. 2005;43:16801693. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13. Mohan, D, Singh, KP, Sinha, S, Gosh, D. Removal of pyridine from aqueous solution using low cost activated carbons derived from agricultural waste materials. Carbon. 2004;42:24092421. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 14. Aramendía, MA, Colmenares, JC, López-Fernández, S, Marinas, A, Marinas, JM, Moreno, JM, Urbano, FJ. Photocatalytic degradation of chlorinated pyridines in titania aqueous suspensions. Cat Today. 2008;138:110116. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15. Stapleton, DR, Mantzavinos, D, Papadaki, M. Photolytic (UVC) and photocatalyic (UVC/TiO2) decomposition of pyridines. J Hazard Mater. 2007;146:640645. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 16. Altare, CR, Bowman, RS, Katz, LE, Kinney, KA, Sullivan, EJ. Regeneration and long-term stability of surfactant-modified zeolite for removal of volatile organic compounds from produced water. Micropor Mesopor Mater. 2007;105:305316. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 17. Erdem, E, Karapinar, N, Donat, R. The removal of heavy metal cations by natural zeolites. J Colloid Interface Sci. 2004;280:309314. .

  • 18. Su, CH, Wu, SH, Shen, SJ, Shiue, GY, Wang, YW, Shu, CM. Thermal characteristics and regeneration analyses of adsorbents by differential scanning calorimetry and scanning electron microscope. J Therm Anal Calorim. 2009;96:765769. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19. Tsai, WT, Hsien, KJ, Hsu, HC. Adsorption of organic compounds from aqueous solution onto the synthesized zeolite. J Hazard Mater. 2009;166:635641. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 20. Sternik D , Majdan M, Deryło-Marczewska A, Żukociński G, Gładysz-Płaska A, Gun’ko VM, Mikhalovsky SV. Influence of basic red 1 dye adsorption on thermal stability of Na-clinoptilolite and Na-bentonite. J Therm Anal Calorim. 2010. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 21. Dragoi, B, Rakic, V, Dumitriu, E, Auroux, A. Adsorption of organic pollutants over microporous solids investigated by microcalorimetry techniques. J Therm Anal Calorim. 2010;99:733740. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 22. Santi, CA, Cortes, S, D’Acqui, LP, Sparvoli, E, Pushparaj, B. Reduction of organic pollutants in Olive Mill Wastewater by using different mineral substrates as adsorbents. Biores Technol. 2008;99:19451951. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 23. Reháková, M, Čuvanová, S, Dzivák, M, Rimár, J, Gaval’ová, Z. Agricultural and agrochemical uses of natural zeolite of the clinoptilolite type. Curr Opin Solid St M. 2004;8:397404. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 24. Alver BE , Sakizci M, Yörükoğullari E. Investigation of clinoptilolite rich natural zeolites from Turkey: a combined XRF, TG/DTG, DTA and DSC study. J Therm Anal Calorim. 2010. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 25. Yörükoğullari E , Yilmaz G, Dikmen S. Thermal treatment of zeolitic tuff. J Therm Anal Calorim. 2010. .

  • 26. Majda, D, Makowski, W. Studies on the equilibrated thermodesorption of n-hexane from ZSM-5 zeolite. The influence of the extraframework cations. J Therm Anal Calorim. 2010;101:519526. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 27. Reháková, M, Jesenák, K, Nagyová, S, Kubinec, R, Čuvanová, S, Fajnor, . Thermochemical properties of copper forms of zeolite ZSM5 containing ethylenediamine. J Therm Anal Calorim. 2004;76:139147. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 28. Reháková, M, Bastl, Z, Finocchiaro, P, Sopková, A. X-ray photoelectron spectroscopic studies of a iodine doped natural zeolite of clinoptilolite type and its thermally degraded products. J Therm Anal Calorim. 1995;45:511518. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 29. Jóna, E, Rudinská, E, Kubranová, M, Sapietová, M, Pajtášová, M, Jorík, V. Intercalation of pyridine derivates and complex formation in the interlayer space of Cu(II)-montmorillonite. Chem Pap. 2005;59:248250.

    • Search Google Scholar
    • Export Citation
  • 30. Reháková, M, Sopková, A, Casciola, M, Bastl, Z. Ac and dc conductivity study of natural zeolitic material of the clinoptilolite type and its iodine forms. Solid State Ionics. 1993;66:189194. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 31. Jin, F, Li, Y. A FTIR and TPD examination of the distributive properties of acid sites on ZSM-5 zeolite with pyridine as a probe molecule. Cat Today. 2009;145:101107. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 32. Burch, R, Howitt, C. Investigation of zeolite catalysts for the direct partial oxidation of benzene to phenol. Appl Catal. 1993;103:135162. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 33. Yariv, S. The role of charcoal on DTA curves of organo-clay complexes: an overwiev. Appl Clay Sci. 2004;24:225236. .

  • 34. Smirnov, KS, Bougeard, D. Computer modeling of the infrared spectra of zeolite catalysts. Catal Today. 2001;70:243253. .

  • 35. Datka, J, Gil, B, Baran, P. Heterogeneity of OH groups in HZSM-5 zeolites: splitting of OH and OD bands in low-temperature IR spectra. Micropor Mesopor Mater. 2003;58:291294. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 36. Lercher, JA, Jentys, A. Infrared and Raman spectroscopy for characterizing zeolites Čejka, J, van Bekkum, H, Corma, A, Schüth, F, eds. Studies in surface science and catalysis, 3rd ed, vol 168. Elsevier: Amsterdam; 2007 435476.

    • Search Google Scholar
    • Export Citation
  • 37. Gil, B. Acidity of zeolites Čejka, J, Peréz-Pariente, J, Roth, WJ, eds. Zeolites: from model materials to industrial catalysts. Trivandrum: Transworld Research Network; 2008 173206.

    • Search Google Scholar
    • Export Citation
  • 38. Cheng, Y, Wang, LJ, Li, LS, Yang, YC, Sun, XY. Preparation and characterization of nanosized ZSM-5 zeolites in the absence of organic template. Mater Lett. 2005;59:34273430. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 39. Dalconi, MC, Cruciani, G, Alberti, A, Ciambelli, P. Over-loaded Cu-ZSM-5 upon heating treatment: a time resolved X-ray diffraction study. Micropor Mesopor Mater. 2006;94:139147. .

    • Crossref
    • Search Google Scholar
    • Export Citation

Manuscript Submission: HERE

  • Impact Factor (2019): 2.731
  • Scimago Journal Rank (2019): 0.415
  • SJR Hirsch-Index (2019): 87
  • SJR Quartile Score (2019): Q3 Condensed Matter Physics
  • SJR Quartile Score (2019): Q3 Physical and Theoretical Chemistry
  • Impact Factor (2018): 2.471
  • Scimago Journal Rank (2018): 0.634
  • SJR Hirsch-Index (2018): 78
  • SJR Quartile Score (2018): Q2 Condensed Matter Physics
  • SJR Quartile Score (2018): Q2 Physical and Theoretical Chemistry

For subscription options, please visit the website of Springer.

Journal of Thermal Analysis and Calorimetry
Language English
Size A4
Year of
Foundation
1969
Volumes
per Year
4
Issues
per Year
24
Founder Akadémiai Kiadó
Founder's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Publisher Akadémiai Kiadó
Springer Nature Switzerland AG
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
CH-6330 Cham, Switzerland Gewerbestrasse 11.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 1388-6150 (Print)
ISSN 1588-2926 (Online)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Jan 2021 1 0 0
Feb 2021 0 0 0
Mar 2021 0 0 0
Apr 2021 0 0 0
May 2021 2 0 0
Jun 2021 0 0 0
Jul 2021 0 0 0