Authors:
Jiakun Dai State Key Laboratory of Fire Science, University of Science and Technology of China, Hefei 230026, Anhui Province, China

Search for other papers by Jiakun Dai in
Current site
Google Scholar
PubMed
Close
,
Naian Liu State Key Laboratory of Fire Science, University of Science and Technology of China, Hefei 230026, Anhui Province, China

Search for other papers by Naian Liu in
Current site
Google Scholar
PubMed
Close
, and
Lifu Shu Research Institute of Forest Ecology, Environment and Protection, Chinese Academy of Forestry, Beijing 100091, People’s Republic of China

Search for other papers by Lifu Shu in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

In our previous research (Liu et al., J Anal Appl Pyrol 63:303–325, 2002), the pseudo bi-component separated-stage model (PBSM) was suggested for the kinetic analysis on the decomposition of lignocellulosic materials in air at relatively lower heating rates. As a continuing work, this paper is intended to investigate the applicability of PBSM at different heating rates by experimental analyses. Decomposition of oil tea wood has been studied by means of non-isothermal thermogravimetric analysis in air atmosphere at 10–25 K min−1 heating rates. A two-step parallel reaction kinetic model is used to optimize the kinetic parameters of these materials in air. Meanwhile, an improved PBSM is developed to describe the thermal degradation process of oil tea wood. Furthermore, a comparison between the kinetic results of parallel model and PBSM reveals realistic applicability of PBSM. It is concluded that the PBSM has relatively high accuracy for the first decomposition step in the lower temperature range, while fails to predict the thermal decomposition behavior in the char oxidative process which occurs in the higher temperature range.

  • 1. Fermoso, J, Arias, B, Pevida, C, Plaza, MG, Rubiera, F, Pis, JJ 2008 Kinetic models comparison for steam gasification of different nature fuel chars. J Therm Anal Calorim 91:779786 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 2. Li, CS, Suzuki, K 2009 Kinetic analyses of biomass tar pyrolysis using the distributed activation energy model by TG/DTA technique. J Therm Anal Calorim 98:261266 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 3. Mohan, D, Pittman, CU, Steele, PH 2006 Pyrolysis of wood/biomass for bio-oil: a critical review. Energy Fuels 20:848889 .

  • 4. Momoh, M, Eboatu, AN, Kolawole, EG, Horrocks, AR 1996 Thermogravimetric studies of the pyrolytic behavior in air of selected tropical timbers. Fire Mater 20:173181 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 5. Budrugeac, P, Emandi, A 2010 The use of thermal analysis methods for conservation state determination of historical and/or cultural objects manufactured from lime tree wood. J Therm Anal Calorim 101:881886 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 6. Korošec, RC, Lavrič, B, Rep, G, Pohleven, F, Bukovec, P 2009 Thermogravimetry as a possible tool for determining modification degree of thermally treated Norway spruce wood. J Therm Anal Calorim 98:189195 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7. Budrugeac, P 2008 Kinetics of the complex process of thermo-oxidative degradation of poly(vinyl alcohol). J Therm Anal Calorim 92:291296 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8. Miranda, R, Sosa_Blanco, C, Martinez, B, Vasile, C 2007 Pyrolysis of textile wastes: I. Kinetics and yields. J Anal Appl Pyrolysis 80:489495 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 9. Caballero, JA, Conesa, JA, Font, R, Marcilla, A 1997 Pyrolysis kinetics of almond shells and olive stones considering their organic fractions. J Anal Appl Pyrolysis 42:159175 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10. Meszaros, E, Várhegyi, G, Jakab, E, Marosvolgyi, B 2004 Thermogravimetric and reaction kinetic analysis of biomass samples from an energy plantation. Energy Fuels 18:497507 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11. Di Blasi, C, Signorelli, G, Di Russo, C, Rea, G 1999 A study of the effect of quench design on the quality of experimental kinetic data. Ind Eng Chem Res 38:22162224 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 12. Font, R, Marcilla, A, Verdu, E, Devesa, J 1991 Thermogravimetric kinetic study of the pyrolysis of almond shells and almond shells impregnated with CoCl2. J Anal Appl Pyrolysis 21:249264 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13. Moltó, J, Font, R, Conesa, JA, Martin-Gullon, I 2006 Thermogravimetric analysis during the decomposition of cotton fabrics in an inert and air environment. J Anal Appl Pyrolysis 76:124131 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 14. Manyà, JJ, Velo, E, Puigjaner, L 2003 Kinetics of biomass pyrolysis: a reformulated three-parallel-reactions model. Ind Eng Chem Res 42:434441 .

  • 15. Chen, HX, Liu, NA, Fan, WC 2006 Two-step consecutive reaction model and kinetic parameters relevant to the decomposition of Chinese forest fuels. J Appl Polym Sci 102:571576 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 16. Várhegyi, G, Antal, MJ, Jakab, E, Szabo, P 1997 Kinetic modeling of biomass pyrolysis. J Anal Appl Pyrolysis 42:7387 .

  • 17. Várhegyi, G, Szabo, P, Jakab, E, Hill, J 2001 J Anal Appl Pyrolysis 57:203222 .

  • 18. Liu, NA, Fan, WC, Dobashi, R, Huang, LS 2002 Kinetic modeling of thermal decomposition of natural cellulosic materials in air atmosphere. J Anal Appl Pyrolysis 63:303325 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19. Punnaruttanakun, P, Meeyoo, V, Kalambaheti, C, Rangsunvigit, P, Rirksomboon, T, Kitiyanan, B 2003 Pyrolysis of API separator sludge. J Anal Appl Pyrolysis 68:547560 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 20. Thipkhunthod, P, Meeyoo, V, Rangsunvigit, P, Kitiyanan, B, Siemanond, K, Rirksomboon, T 2006 Pyrolytic characteristics of sewage sludge. Chemosphere 64:955962 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 21. Kissinger, HE 1956 Variation of peak temperature with heating rate in differential thermal analysis. J Res Natl Bur Stand 57:217221.

    • Search Google Scholar
    • Export Citation
  • 22. Kissinger, HE 1957 Reaction kinetics in differential thermal analysis. Anal Chem 29:17021706 .

  • 23. Šesták, J 1990 Diagnostic limits of phenomenological kinetic models introducing the accommodation function. J Therm Anal Calorim 36:19972007 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 24. Antal, MJ, Várhegyi, G 1995 Cellulose pyrolysis kinetics: the current state of knowledge. Ind Eng Chem Res 34:703717 .

  • Collapse
  • Expand

To see the editorial board, please visit the website of Springer Nature.

Manuscript Submission: HERE

For subscription options, please visit the website of Springer Nature.

Journal of Thermal Analysis and Calorimetry
Language English
Size A4
Year of
Foundation
1969
Volumes
per Year
1
Issues
per Year
24
Founder Akadémiai Kiadó
Founder's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Publisher Akadémiai Kiadó
Springer Nature Switzerland AG
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
CH-6330 Cham, Switzerland Gewerbestrasse 11.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 1388-6150 (Print)
ISSN 1588-2926 (Online)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
May 2024 3 0 0
Jun 2024 22 0 0
Jul 2024 20 0 0
Aug 2024 10 0 0
Sep 2024 29 0 0
Oct 2024 139 1 0
Nov 2024 33 0 0