Authors:
Liang Xue National Key Lab of Science and Technology on Combustion and Explosion, Xi’an Modern Chemistry Research Institute, Xi’an 710065, China
School of Chemistry and Materials Science, Shaanxi Normal University, Xi’an 710062, China

Search for other papers by Liang Xue in
Current site
Google Scholar
PubMed
Close
,
Feng-Qi Zhao National Key Lab of Science and Technology on Combustion and Explosion, Xi’an Modern Chemistry Research Institute, Xi’an 710065, China

Search for other papers by Feng-Qi Zhao in
Current site
Google Scholar
PubMed
Close
,
Xiao-Ling Xing National Key Lab of Science and Technology on Combustion and Explosion, Xi’an Modern Chemistry Research Institute, Xi’an 710065, China

Search for other papers by Xiao-Ling Xing in
Current site
Google Scholar
PubMed
Close
,
Zhi-Ming Zhou School of Chemical Engineering and Environment, Beijing Institute of Technology, Beijing 100081, China

Search for other papers by Zhi-Ming Zhou in
Current site
Google Scholar
PubMed
Close
,
Kai Wang School of Chemical Engineering and Environment, Beijing Institute of Technology, Beijing 100081, China

Search for other papers by Kai Wang in
Current site
Google Scholar
PubMed
Close
,
Hong-Xu Gao National Key Lab of Science and Technology on Combustion and Explosion, Xi’an Modern Chemistry Research Institute, Xi’an 710065, China

Search for other papers by Hong-Xu Gao in
Current site
Google Scholar
PubMed
Close
,
Jian-Hua Yi National Key Lab of Science and Technology on Combustion and Explosion, Xi’an Modern Chemistry Research Institute, Xi’an 710065, China

Search for other papers by Jian-Hua Yi in
Current site
Google Scholar
PubMed
Close
,
Si-Yu Xu National Key Lab of Science and Technology on Combustion and Explosion, Xi’an Modern Chemistry Research Institute, Xi’an 710065, China

Search for other papers by Si-Yu Xu in
Current site
Google Scholar
PubMed
Close
, and
Rong-Zu Hu National Key Lab of Science and Technology on Combustion and Explosion, Xi’an Modern Chemistry Research Institute, Xi’an 710065, China

Search for other papers by Rong-Zu Hu in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The thermal decomposition behaviors of 1,2,3-triazole nitrate were studied using a Calvet Microcalorimeter at four different heating rates. Its apparent activation energy and pre-exponential factor of exothermic decomposition reaction are 133.77 kJ mol−1 and 1014.58 s−1, respectively. The critical temperature of thermal explosion is 374.97 K. The entropy of activation (ΔS), the enthalpy of activation (ΔH), and the free energy of activation (ΔG) of the decomposition reaction are 23.88 J mol−1 K−1, 130.62 kJ mol−1, and 121.55 kJ mol−1, respectively. The self-accelerating decomposition temperature (TSADT) is 368.65 K. The specific heat capacity was determined by a Micro-DSC method and a theoretical calculation method. Specific heat capacity equation is (283.1 K < T < 353.2 K). The adiabatic time-to-explosion is calculated to be a certain value between 98.82 and 100.00 s. The critical temperature of hot-spot initiation is 637.14 K, and the characteristic drop height of impact sensitivity (H50) is 9.16 cm.

  • 1. Gao, HX, Ye, CF, Piekarski, CM 2007 Computational characterization of energetic salts. J Phys Chem C. 111:1071810726 .

  • 2. Agrawal, JP 1998 Recent trends in high-energy materials. Prog Energ Combust Sci. 24:113 .

  • 3. Huang, HF, Meng, ZH, Zhou, ZM, Gao, HX, Zhang, J, Wu, YK 2009 Energetic salts and energetic ionic liquids. Prog Chem 21:152161 (in Chinese)

    • Search Google Scholar
    • Export Citation
  • 4. Drake, G, Kaplan, G, Hall, L, Hawkins, T, Larue, J 2007 A new family of energetic ionic liquids 1-amino-3-alkyl-1,2,3-triazolium nitrates. J Chem Crys. 37:1522 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 5. Ye, CF, Shreeve, JM 2007 Rapid and accurate estimation of densities of room-temperature ionic liquids and salts. J Phys Chem A. 111:14561461 .

  • 6. Tong, B, Liu, QS, Tan, ZC, Urs, WB 2010 Thermochemistry of alkyl pyridinium bromide ionic liquids: calorimetric measurements and calculation. J Phys Chem A. 114:37823787 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7. Krossing, I, Slattery, JM, Daguenet, C, Dyson, PJ, Oleinikova, A, Weingärtner, H 2006 Why are ionic liquids liquid? A simple explanation based on lattice and salvation energies. J Am Chem Soc. 128:1342713434 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8. Kolaski, M, Lee, HM, Pak, C, Kim, KS 2008 Charge-transfer-to-solvent-driven dissolution dynamics of 1-(H2O)2-5 upon excitation: excited-state ab initio molecular dynamics simulations. J Am Chem Soc. 130:103112 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 9. Mel’yanenko, EVN, Verevkin, SP, Heintz, A 2009 Imidazolium-based ionic liquids. 1-Methyl imidazolium nitrate: thermochemical measurements and Ab initio calculations. J Phys Chem B. 113:98719881 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10. Urszula, D, Andrzej, M 2007 Activity coefficients at infinite dilution measurements for organic solutes and water in the ionic liquid 1-ethyl-3-methylimidazolium trifluoroacetate. J Phys Chem B. 111:1198411988 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11. Fischer, G, Holl, G, Klapötke, TM, Weigand, JJ 2005 A study on thermal decomposition behavior of derivatives of 1,5-diamino-1H-tetrazole (DAT): a new family of energetic heterocyclic-based salts. Thermochim Acta. 437:168175 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 12. Chowdhury, A, Thynell, ST 2007 Confined rapid thermolysis/FTIR/ToF studies of triazolium-based energetic ionic liquids. Thermochim Acta. 466:111 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13. Chowdhury, A, Thynell, ST, Lin, P 2009 Confined rapid thermolysis/FTIR/ToF studies of triazolium-based energetic ionic liquids. Thermochim Acta. 485:112 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 14. Kissinger, HE 1957 Reaction kinetics in differential thermal analysis. Anal Chem. 29:17021706 .

  • 15. Ozawa, T 1965 A new method of analyzing thermogravimetric data. Bull Chem Soc Jpn. 38:18811886 .

  • 16. Hu, RZ, Gao, SL, Zhao, FQ, Shi, QZ, Zhang, TL, Zhang, JG 2008 Thermal analysis kinetics 2 Science Press Beijing (in Chinese)

  • 17. Xing, XL, Xue, L, Zhao, FQ, Gao, HX, Hu, RZ 2009 Thermochemical properties of 1,1-diamino-2,2-dinitroethylene (FOX-7) in dimethyl sulfoxide (DMSO). Thermochim Acta. 35:491497.

    • Search Google Scholar
    • Export Citation
  • 18. Gao, HX, Zhao, FQ, Hu, RZ, Zhao, HA, Zhang, H 2009 Estimation of the critical temperature of thermal explosion for azido-acetic-acid-2-(2-azido-acetoxy)-ethylester using non-isothermal DSC. J Therm Anal Calorim. 95:477482 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19. Xu, KZ, Song, JR, Zhao, FQ, Ma, HX, Gao, HX, Chang, CR, Ren, YH, Hu, RZ 2008 Thermal behavior, specific heat capacity and adiabatic time-to explosion of G(FOX-7). J Hazard Mater. 158:333339 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 20. Xue, L, Zhao, FQ, Xing, XL, Gao, HX, Xu, SY, Hu, RZ 2009 Dissolution properties of 1,3,3-trinitroazetidine (TNAZ) in ethyl acetate and N,N-dimethylformamide. Acta Phy Chim Sin. 25:24132421.

    • Search Google Scholar
    • Export Citation
  • 21. Xue, L, Zhao, FQ, Hu, RZ, Gao, HX 2010 A simple method to estimate the critical temperature of thermal explosion for energetic materials using nonisothermal DSC. J Energ Mater. 28:1731 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 22. Li, JZ, Fan, XZ, Hu, RZ, Zhao, FQ, Gao, HX 2009 Thermal behavior of copper(II) 4-nitroimidazolate. J Therm Anal Calorim. 96:01195 .

  • 23. Xu, SY, Zhao, FQ, Yi, JH, Hu, RZ, Gao, HX, Li, SW, Hao, HX, Pei, Q 2008 Thermal behavior and non-isothermal decomposition reaction kinetics of composite modified double base propellant containing CL-20. Acta Phy Chim Sin. 24:13711379.

    • Search Google Scholar
    • Export Citation
  • 24. Arkady, MK, Liubov, PS 2010 Molar heat capacities of the (water + acetonitrile) mixtures at T = (283.15, 298.15, 313.15, and 328.15) K. J Chem Thermodyn. 42:12091212 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 25. Dong, HS, Zhao, FF 1989 Performances of high explosive and its related materials Science Press Beijing.

  • 26. Dong, HS, Hu, RZ, Yao, P, Zhang, XX 2001 Thermograms of energetic materials National Defence Industry Press Beijing.

  • Collapse
  • Expand

To see the editorial board, please visit the website of Springer Nature.

Manuscript Submission: HERE

For subscription options, please visit the website of Springer Nature.

Journal of Thermal Analysis and Calorimetry
Language English
Size A4
Year of
Foundation
1969
Volumes
per Year
1
Issues
per Year
24
Founder Akadémiai Kiadó
Founder's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Publisher Akadémiai Kiadó
Springer Nature Switzerland AG
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
CH-6330 Cham, Switzerland Gewerbestrasse 11.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 1388-6150 (Print)
ISSN 1588-2926 (Online)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Apr 2024 10 0 0
May 2024 20 0 0
Jun 2024 27 0 0
Jul 2024 21 0 0
Aug 2024 44 0 0
Sep 2024 41 0 0
Oct 2024 59 0 0