The thermal decomposition behaviors of 1,2,3-triazole nitrate were studied using a Calvet Microcalorimeter at four different heating rates. Its apparent activation energy and pre-exponential factor of exothermic decomposition reaction are 133.77 kJ mol−1 and 1014.58 s−1, respectively. The critical temperature of thermal explosion is 374.97 K. The entropy of activation (ΔS≠), the enthalpy of activation (ΔH≠), and the free energy of activation (ΔG≠) of the decomposition reaction are 23.88 J mol−1 K−1, 130.62 kJ mol−1, and 121.55 kJ mol−1, respectively. The self-accelerating decomposition temperature (TSADT) is 368.65 K. The specific heat capacity was determined by a Micro-DSC method and a theoretical calculation method. Specific heat capacity equation is (283.1 K < T < 353.2 K). The adiabatic time-to-explosion is calculated to be a certain value between 98.82 and 100.00 s. The critical temperature of hot-spot initiation is 637.14 K, and the characteristic drop height of impact sensitivity (H50) is 9.16 cm.
1. Gao, HX, Ye, CF, Piekarski, CM 2007 Computational characterization of energetic salts. J Phys Chem C. 111:10718–10726 .
2. Agrawal, JP 1998 Recent trends in high-energy materials. Prog Energ Combust Sci. 24:1–13 .
3. Huang, HF, Meng, ZH, Zhou, ZM, Gao, HX, Zhang, J, Wu, YK 2009 Energetic salts and energetic ionic liquids. Prog Chem 21:152–161 (in Chinese)
4. Drake, G, Kaplan, G, Hall, L, Hawkins, T, Larue, J 2007 A new family of energetic ionic liquids 1-amino-3-alkyl-1,2,3-triazolium nitrates. J Chem Crys. 37:15–22 .
5. Ye, CF, Shreeve, JM 2007 Rapid and accurate estimation of densities of room-temperature ionic liquids and salts. J Phys Chem A. 111:1456–1461 .
6. Tong, B, Liu, QS, Tan, ZC, Urs, WB 2010 Thermochemistry of alkyl pyridinium bromide ionic liquids: calorimetric measurements and calculation. J Phys Chem A. 114:3782–3787 .
7. Krossing, I, Slattery, JM, Daguenet, C, Dyson, PJ, Oleinikova, A, Weingärtner, H 2006 Why are ionic liquids liquid? A simple explanation based on lattice and salvation energies. J Am Chem Soc. 128:13427–13434 .
8. Kolaski, M, Lee, HM, Pak, C, Kim, KS 2008 Charge-transfer-to-solvent-driven dissolution dynamics of 1-(H2O)2-5 upon excitation: excited-state ab initio molecular dynamics simulations. J Am Chem Soc. 130:103–112 .
9. Mel’yanenko, EVN, Verevkin, SP, Heintz, A 2009 Imidazolium-based ionic liquids. 1-Methyl imidazolium nitrate: thermochemical measurements and Ab initio calculations. J Phys Chem B. 113:9871–9881 .
10. Urszula, D, Andrzej, M 2007 Activity coefficients at infinite dilution measurements for organic solutes and water in the ionic liquid 1-ethyl-3-methylimidazolium trifluoroacetate. J Phys Chem B. 111:11984–11988 .
11. Fischer, G, Holl, G, Klapötke, TM, Weigand, JJ 2005 A study on thermal decomposition behavior of derivatives of 1,5-diamino-1H-tetrazole (DAT): a new family of energetic heterocyclic-based salts. Thermochim Acta. 437:168–175 .
12. Chowdhury, A, Thynell, ST 2007 Confined rapid thermolysis/FTIR/ToF studies of triazolium-based energetic ionic liquids. Thermochim Acta. 466:1–11 .
13. Chowdhury, A, Thynell, ST, Lin, P 2009 Confined rapid thermolysis/FTIR/ToF studies of triazolium-based energetic ionic liquids. Thermochim Acta. 485:1–12 .
14. Kissinger, HE 1957 Reaction kinetics in differential thermal analysis. Anal Chem. 29:1702–1706 .
15. Ozawa, T 1965 A new method of analyzing thermogravimetric data. Bull Chem Soc Jpn. 38:1881–1886 .
16. Hu, RZ, Gao, SL, Zhao, FQ, Shi, QZ, Zhang, TL, Zhang, JG 2008 Thermal analysis kinetics 2 Science Press Beijing (in Chinese)
17. Xing, XL, Xue, L, Zhao, FQ, Gao, HX, Hu, RZ 2009 Thermochemical properties of 1,1-diamino-2,2-dinitroethylene (FOX-7) in dimethyl sulfoxide (DMSO). Thermochim Acta. 35:491–497.
18. Gao, HX, Zhao, FQ, Hu, RZ, Zhao, HA, Zhang, H 2009 Estimation of the critical temperature of thermal explosion for azido-acetic-acid-2-(2-azido-acetoxy)-ethylester using non-isothermal DSC. J Therm Anal Calorim. 95:477–482 .
19. Xu, KZ, Song, JR, Zhao, FQ, Ma, HX, Gao, HX, Chang, CR, Ren, YH, Hu, RZ 2008 Thermal behavior, specific heat capacity and adiabatic time-to explosion of G(FOX-7). J Hazard Mater. 158:333–339 .
20. Xue, L, Zhao, FQ, Xing, XL, Gao, HX, Xu, SY, Hu, RZ 2009 Dissolution properties of 1,3,3-trinitroazetidine (TNAZ) in ethyl acetate and N,N-dimethylformamide. Acta Phy Chim Sin. 25:2413–2421.
21. Xue, L, Zhao, FQ, Hu, RZ, Gao, HX 2010 A simple method to estimate the critical temperature of thermal explosion for energetic materials using nonisothermal DSC. J Energ Mater. 28:17–31 .
22. Li, JZ, Fan, XZ, Hu, RZ, Zhao, FQ, Gao, HX 2009 Thermal behavior of copper(II) 4-nitroimidazolate. J Therm Anal Calorim. 96:01–195 .
23. Xu, SY, Zhao, FQ, Yi, JH, Hu, RZ, Gao, HX, Li, SW, Hao, HX, Pei, Q 2008 Thermal behavior and non-isothermal decomposition reaction kinetics of composite modified double base propellant containing CL-20. Acta Phy Chim Sin. 24:1371–1379.
24. Arkady, MK, Liubov, PS 2010 Molar heat capacities of the (water + acetonitrile) mixtures at T = (283.15, 298.15, 313.15, and 328.15) K. J Chem Thermodyn. 42:1209–1212 .
25. Dong, HS, Zhao, FF 1989 Performances of high explosive and its related materials Science Press Beijing.
26. Dong, HS, Hu, RZ, Yao, P, Zhang, XX 2001 Thermograms of energetic materials National Defence Industry Press Beijing.