Sb(VO3)3 has been synthesized by interaction between NH4VO3 and Sb2O3. The compound crystallizes in monoclinic system with lattice parameters: a = 17.150; b = 15.940; c = 14.600 Å and angle β = 90.50°. The scanning electronic microscopy shows thin flat plates measuring ~20 μm along with detritus material. The synthesis was simulated by thermal analysis and the final product identified by X-ray diffraction. Thermal analyses of the ternary system xNH4VO3 + (1 − x)(NH4)2HPO4 + Sb2O3 lead to the formation of Sb(VO3)3 and SbPO4 at 500 °C. At high temperature (900 °C), SbVO4, SbOPO4, VO and SbP5O14 are formed. The data of thermal analysis match with the composition of intermediate and final products. No solid solutions containing simultaneously PO4−3 and VO4−3 ions have been found.
1. Talledo, A, Granqvist, CG. Electrochromic vanadium-pentoxide-based films-structural, electrochemical, and optical-properties. J Appl Phys. 1995;77: 9 4655–4666. .
2. Julien, C, Haro-Poniatowski, E, Camacho-Lopez, MA, Escobar-Alarcon, L, Jimenez-Jarquin, J. Growth of V2O5 thin films by pulsed laser deposition and their applications in lithium microbatteries. Mat Sci Eng B Solid. 1999;65: 3 170–176. .
3. Fei, HL, Zhou, HJ, Wang, JG, Sun, PC, Ding, DT, Chen, TH. Synthesis of hollow V2O5 microspheres and application to photocatalysis. Solid State Sci. 2008;10: 10 1276–1284. .
4. Grigorieva, AV, Tarasov, AB, Goodilin, EA, Badalyan, SM, Rumyantseva, MN, Gaskov, AM, et al. Sensor properties of vanadium oxide nanotubes. Mendeleev Comm. 2008;18: 1 6–7. .
5. Nilsson, J, Landa-Cánovas, A, Hansen, S, Andersson, A. Catalysis and structure of the SbVO4/Sb2O4 system for propane ammoxidation. Catal Today. 1997;33: 1–3 97–108. .
6. Patrina, IB, Ioffe, VA. Electrical properties of vanadium pentoxide. Sov Phys Solid State, USSR. 1965;6: 11 2581.
7. Schuer, H, Klemm, W. Note on VSbO4. Z Anorg Allg Chem. 1973;395: 2–3 287–290. .
8. Duquenoy, G, Josien, FA, Livage, J, Michaud, M. Demonstration of a compound of mixed valences in the Sb2O3–V2O5 system. Rev de Chim Miner. 1981;18: 4 344–354.
9. Filipek, E, Piz, M. The reactivity of SbVO5 with T-Nb2O5 in solid state in air. J Therm Anal Calorim. 2010;101: 2 417–453. .
10. Melnikov, P, dos Santos, FJ, Santagnelli, SB, Secco, MAC, Guimaraes, WR, Delben, A, et al. Mechanism of the formation and properties of antimony polyphosphate. J Therm Anal Calorim. 2005;81: 1 45–49. .
11. Shimizu, A, Watanabe, T, Inagaki, M. Single-crystal study of topotactic changes between NH4VO3 and V2O5. J Mater Chem. 1994;4: 9 1475–1478. .
12. Taniguchi, M, Ingraham, TR. Mechanism of thermal decomposition of ammonium metavanadate. Can J Chem-Rev Can Chim. 1964;42: 11 2467–2473. .
13. Khulbe, KC, Mann, RS. Thermal-decomposition of ammonium metavanadate. Can J Chem Rev Can Chim. 1975;53: 19 2917–2921. .
14. Durif, A. Crystal chemistry of condensed phosphates. New York: Hing Corporation; 1995.
15. Melnikov, P, Guirardi, AL, Secco, MAC, de Aguia, EN. Study of the trivalent elements polyphosphates by thermal analysis. J Therm Anal Calorim. 2008;94: 1 163–167. .
16. Melnikov, P, dos Santos, HWL, Gonçalves, RV. Thermal behavior of the mixed composition xSb2O3–(1−x)Bi2O3–6(NH4)2HPO4. J Therm Anal Calorim. 2009;101: 3 907–911. .
17. Irigoyen, B, Juan, A, Larrondo, S, Amadeo, N. The electronic structure of vanadium antimonate: a theoretical study. Catal Today. 2005;107–108:40–45. .
18. Greenwood, NN, Earnshaw, A. Chemistry of the elements. 2 Oxford: Elsevier; 1998.
19. Schwingenschlogl, U, Eyert, V. The vanadium Magneli phases V(n)O(2n−1). Ann Phys-Berlin. 2004;13: 9 475–510. .
20. Hilmer, N, Chudinova, NN, Jost, KH. Condensed bismuth phosphates. Inorg Mater. 1978;14: 8 1178–1184.