View More View Less
  • 1 Department of Physics, St. Aloysius’ College, Edathua 689573, India
  • | 2 Physics Research Centre, S.T. Hindu College, Nagercoil 629002, India
  • | 3 Department of Physics, S.B. College, Changanacherry 686101, India
Restricted access

Abstract

Thermal decomposition of manganese malonate dihydrate single crystals grown by gel method has been studied using the TG-DTA and DSC techniques. The presence of water molecules and the dehydration stages are discussed. Dielectric constant, dielectric loss, and AC conductivity have been estimated as a function of temperature in the range of 40–120 °C for four different frequencies. Thermal studies reveal that the material is thermally stable up to123 °C. The dielectric measurements indicate that the dielectric parameters increase with the increase in temperature. Also, the dielectric constant and dielectric loss factor values decrease whereas the electrical conductivities increase with the increase in frequency of the AC applied.

  • 1. Zhang, Q-Z, Yang, W-B, Chen, S-M, Lu, C-Z. Synthesis and crystal structures of two metal complexes incorporating malonate and organodiamine ligands. Bull Korean Chem Soc. 2005;26:16311634. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 2. Delgado, FS, Kerbellec, N, Ruiz-Perez, C, Cano, J, Lloret, F, Julve, M. Malonate–containing manganese (III) complexes; synthesis, crystal structure and magnetic properties of As Ph4 [Mn (mal)2 (H2O)2]. Inorg Chem. 2006;45:10121020. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 3. Bhagavannarayana, G, Kushwaha, SK, Parthiban, S, Meenakshisundaram, S. The influence of Mn-doping on the non-linear optical properties and crystalline perfection of tris (thiourea) zinc (II) sulphate crystals. J Cryst Growth. 2009;311:960965. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 4. Marczynski, S, Guskos, N, Typek, J, Grech, E, Kolodziej, B. Magnetic ordering process in manganese (II) di (hydrogen malonate) monohydrate complex studied by ESR spectroscopy. Mater Sci Poland. 2006;24:11391144.

    • Search Google Scholar
    • Export Citation
  • 5. Gupta, MP, Chand, P. The crystal structure of manganese malonate dihydrate. Curr Sci. 1977;46:557.

  • 6. Lis, T, Matuszewski, J. Manganese (II) malonate dihydrate: a re-investigation. Acta Cryst. 1979;B35:22122214.

  • 7. Blank, Z. The growth of cadmium mercury thiocyanate and zinc mercury thiocyanate crystals in gels. J Cryst Growth. 1973;18:281288. .

  • 8. Mathew, V, Joseph, J, Jacob, S, Abraham, KE. Crystallization and spectroscopic studies of manganese malonate. Bull Mat Sci. 2010;33:433437. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 9. Perumal, S, Mahadevan, CK. 2005 Growth and characterization of multiphased mixed crystals of KCl, KBr and KI–part 2: Electrical measurements. Physica B. 367:172181. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10. Neelakanda Pillai, N, Mahadevan, CK. Preparation and electrical properties of (NaCl)x (NaBr)y-x (NaI) 1-y crystals. Mater Manuf Proc. 2007;22:393399. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11. Gabbott, Paul. Principles and applications of thermal analysis. Oxford: U. K. Blackwell; 2008 .

  • 12. Brown, ME. Handbook of thermal analysis and calorimetry. 1 Amsterdam: Elsevier; 2003.

  • 13. Nabar, MA, Jukar, BN. Studies on double malonates-II. Potassium rare earth malonates, K5Ln (C3H2O4)4 (Ln=Gd–Ho or Y). Bull Chem Soc Jpn. 1985;58:35823586. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 14. Muraishi, K. Thermal decomposition of alkali metal malonate anhydrides in various atmospheres. Thermochimica Acta. 1990;164:401409. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15. Muraishi, K, Suzuki, Y, Takahashi, Y. Thermal behavior of alkaline earth metal malonate hydrates and their anhydrides. Thermochimica Acta. 1996;286:187198. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 16. Varughese, PA, Saban, KV, George, J, Paul, I, Varghese, G. Crystallization and structural properties of calcium malonate hydrate. J Mat Sci. 2004;39:63256331. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 17. Doreswamy, BH, Mahendra, M, Sridhar, MA, Shashidhara Prasad, J, Varughese, PA, Saban, KV, Varghese, G. Structural studies on praseodymium malonate hydrate. J Mol Struct. 2003;659:8188. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 18. Mathew, V, Joseph, J, Jacob, S, Abraham, KE. Spectroscopic characterization of gel grown strontium malonate crystals. Indian J Pure Appl Phys. 2011;49:2124.

    • Search Google Scholar
    • Export Citation
  • 19. Caires, FJ, Lima, LS, Carvalho, CT, Giagio, RJ, Ionashiro, M. Thermal behavior of malonic acid, sodium malonate and its compounds with some bivalent transition metal ions. Thermochimica Acta. 2010;497:3540. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 20. Rzaczynska, Z, Danczowska-Burdon, A, Sienkiewicz-Gromiuk, J. Thermal and spectroscopic properties of light lanthanides (III) and sodium complexes of 2,5-pyridinedicarboxylic acid. J Therm Anal Calorim. 2010;101:671677. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 21. Wyrzykowski, D, Chumurzynski, L. Thermodynamics of citrate complexation with Mn2+, Co2+, Ni2+ and Zn2+ ions. J Therm Anal Calorim. 2010;102:6164. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 22. Meena, M, Mahadevan, CK. Growth and dielectric properties of l-arginine acetate and l-arginine oxalate single crystals. Mater Lett. 2008;62:37423744. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 23. Goma, S, Padma, CM, Mahadevan, CK. Dielectric parameters of KDP single crystals added with urea. Mater Lett. 2006;60:37013705. .

  • 24. Meena, M, Mahadevan, CK. Growth and electrical characterization of l-arginine added KDP and ADP single crystals. Cryst Res Technol. 2008;43:166172. .

    • Crossref
    • Search Google Scholar
    • Export Citation

Manuscript Submission: HERE

  • Impact Factor (2019): 2.731
  • Scimago Journal Rank (2019): 0.415
  • SJR Hirsch-Index (2019): 87
  • SJR Quartile Score (2019): Q3 Condensed Matter Physics
  • SJR Quartile Score (2019): Q3 Physical and Theoretical Chemistry
  • Impact Factor (2018): 2.471
  • Scimago Journal Rank (2018): 0.634
  • SJR Hirsch-Index (2018): 78
  • SJR Quartile Score (2018): Q2 Condensed Matter Physics
  • SJR Quartile Score (2018): Q2 Physical and Theoretical Chemistry

For subscription options, please visit the website of Springer.

Journal of Thermal Analysis and Calorimetry
Language English
Size A4
Year of
Foundation
1969
Volumes
per Year
4
Issues
per Year
24
Founder Akadémiai Kiadó
Founder's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Publisher Akadémiai Kiadó
Springer Nature Switzerland AG
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
CH-6330 Cham, Switzerland Gewerbestrasse 11.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 1388-6150 (Print)
ISSN 1588-2926 (Online)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Apr 2021 1 0 0
May 2021 0 0 0
Jun 2021 11 0 0
Jul 2021 3 0 0
Aug 2021 3 0 0
Sep 2021 1 0 0
Oct 2021 0 0 0