View More View Less
  • 1 Hohai University, 1 Xikang Road, 210098, Nanjing, China
  • 2 City College of New York, 160 Convent Avenue, New York, NY, 10031, US
Restricted access

Abstract

The purpose of this study is to simulate the early age concrete behaviors and evaluate the cracking risk with the thermal and thermal stress analysis. A new finite element method program associated with ANSYS program is developed for the computation of thermal field and thermal stress field for early age concrete considering the following characters: degree of hydration, thermal properties (such as specific heat, thermal diffusivity), thermal boundary conditions, and mechanical properties (such as shrinkage, creep) which occur at early age. The results from simulation compared with experimental values found in the literature show a good agreement. Finally, based on this user-developed subroutine, the effects of hydration heat, ambient temperature, wind velocity, shrinkage, and length-height ratio on cracking risk were analyzed for a concrete wall which is one part of the structure of Maridal culvert in Norway. By which, the measures to control the cracking were provided for the engineering application.

  • 1. Kjellman O , Olofsson J. 3D structural analysis of crack risk in hardening concrete structures. Verification of a three-step engineering method;. 1999. Contract No.: TG 4/N2.

    • Search Google Scholar
    • Export Citation
  • 2. Nocun-Wczelik, W, Stok, A, Konik, Z. Heat evolution in hydrating expansive cement systems. J Therm Anal Calorim. 2010;101:527532. .

  • 3. Du, C, Liu, G. Numerical procedure for thermal creep stress in mass concrete structures. Commun Numer Eng. 1994;10: 7 545554. .

  • 4. Bazant, ZP. Prediction of concrete creep and shrinkage: past, present and future. Nucl Eng Des. 2001;203: 1 2738. .

  • 5. Altoubat, SA, Lange, DA. Creep, shrinkage, and cracking of restrained concrete at early age. ACI Mater J. 2001;98: 4 323331.

  • 6. De Schutter, G. Finite element simulation of thermal cracking in massive hardening concrete elements using degree of hydration based material laws. Comput Struct. 2002;80:20352042. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7. Yuan, Y, Wan, ZL. Prediction of cracking within early-age concrete due to thermal, drying and creep behavior. Cem Concr Res. 2002;32: 7 10531059. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8. Wu, Y, Luna, R. Numerical implementation of temperature and creep in mass concrete. Finite Elem Anal Des. 2001;37: 2 97106. .

  • 9. Amin, MN, Kim, J-S, Lee, Y, Kim, J-K. Simulation of the thermal stress in mass concrete using a thermal stress measuring device. Cem Concr Res. 2009;39: 3 154164. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10. ACI209R-92. Prediction of creep, shrinkage, and temperature effects in concrete structures: American Concrete Institute; 1992.

  • 11. van Breugel K , Koenders EAB. Effect on solar radiation on the risk of cracking in young concrete, Delft University of Technology; 2001. Report No.: BE96-3843.

    • Search Google Scholar
    • Export Citation
  • 12. Borst, RD, Boogaard, AH. Finite-element modeling of deformation and cracking in early-age concrete. J Eng Mech. 1994;120: 12 25192534. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13. Vartiainen, E. New approach to estimating the diffuse irradiance on inclined surfaces. Renew Energy. 2000;20: 1 4564. .

  • 14. Chwieduk, DA. Recommendation on modelling of solar energy incident on a building envelope. Renew Energy. 2009;34: 3 736741. .

  • 15. van Breugel K . Simulation of hydration and formation of structure in hardening cement-based materials. Delft: Delft University of Technology, Doctoral thesis; 1991.

    • Search Google Scholar
    • Export Citation
  • 16. Schindler AK , Folliard KJ, editors. Influence of supplementary cementing materials on the heat of hydration of concrete. Advances in Cement and Conrete IX Conference; 2003; Copper Mountain Conference Resort in Colorado.

    • Search Google Scholar
    • Export Citation
  • 17. Goni, S, Puertas, F, Hernandez, MS, Palacios, M, Guerrero, A, Dolado, JS, et al. Quantitative study of hydration of C3S and C2S by thermal analysis. J Therm Anal Calorim. 2010;102:965973. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 18. Carino NJ , Lew HS, editors. The maturity method: from theory to application. In: Proceedings of the 2001 structures congress & exposition; 2001 May 21–23; Washington, DC: American Society of Civil Engineers.

    • Search Google Scholar
    • Export Citation
  • 19. Gruyaert, E, Robeyst, N, Belie, ND. Study of the hydration of Portland cement blended with blast-furnace slag by calorimetry and thermogravimetry. J Therm Anal Calorim. 2010;102:941951. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 20. Dimon, P. Material stability predictions applying a new non-arrhenian temperature function. J Therm Anal Calorim. 2009;97:391396. .

  • 21. Knudsen T , editor. Modeling hydration of Portland cement—the effects of particle size distribution. In: Proceedings of the engineering foundation conference on characterization and performance prediction of cement and concrete; 1982 July; Henniker, NH: United Engineering Trustees Inc.

    • Search Google Scholar
    • Export Citation
  • 22. Kjellsen, KO, Detwiler, RJ. Later-age strength prediction by a modified maturity model. ACI Mater J. 1993;90: 3 220227.

  • 23. McCullough BF , Ransmussen RO. Fast track paving: concrete temperature control and traffic opening criteria for bonded concrete overlays; 1998. U.S.: FHWA1998 Contract No.: Final Report.

    • Search Google Scholar
    • Export Citation
  • 24. Ulm, F-J, Coussy, O. Modeling of thermochemomechanical couplings of concrete at early ages. J Eng Mech. 1995;121: 7 785794. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 25. Nakamura, H, Hamada, S, Tanimoto, T, Miyamoto, A. Estimation of thermal crack resistance for mass concrete structures with uncertain material properties. ACI Struct J. 1999;96: 4 509518.

    • Search Google Scholar
    • Export Citation
  • 26. Emanuel, JH, Hulsey, JL. Prediction of the thermal coefficient of expansion of concrete. J ACI. 1977;74: 4 149155.

  • 27. Sellevold, EJ, Bjntegaard, Ø. Coefficient of thermal expansion of cement paste and concrete: mechanisms of moisture interaction. Mater Struct. 2006;39:809815. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 28. Larson M . Thermal crack estimation in early age concrete-models and methods for practical application. Lulea University of Technology, Doctoral thesis; 2003.

    • Search Google Scholar
    • Export Citation
  • 29. Bilbao, J, de Miguel, AH, Kambezidis, HD. Air temperature model evaluation in the north mediterranean belt area. J Appl Meteorol. 2002;41: 8 872884. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 30. Spencer, JW. Fourier series representation of the position of the sun. Search. 1971;2: 5 172.

  • 31. Rigollier, C, Bauer, O, Wald, L. On the clear sky model of the ESRA—European Solar Radiation Atlas—with respect to the heliosat method. Sol Energy. 2000;68: 1 3348. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 32. Threlkeld, JL. Thermal environmental engineering. New Jersey: Prentice-Hall Inc.; 1970.

  • 33. Kaska, O, Yumrutas, R, Arpa, O. Theoretical and experimental investigation of total equivalent temperature difference (TETD) values for building walls and flat roofs in turkey. Appl Energy. 2009;86: 5 737747. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 34. Kanstad, T, Hammer, TA, Bjntegaard, Ø, Sellevold, EJ. Mechanical properties of young concrete: part ii: determination of model parameters and test program proposals. Mater Struct. 2003;36: 258 226230. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 35. CEB-FIP model 1990, CEB bulletin No. 203. Lausanne, Switzerland; 1991.

  • 36. Holt, E, Leivo, M. Cracking risks associated with early age shrinkage. Cem Concr Compos. 2004;26: 5 521530. .

  • 37. Lura, P, Winnefeld, F, Klemm, S. Simultaneous measurements of heat of hydration and chemical shrinkage on hardening cement pastes. J Therm Anal Calorim. 2010;101: 3 925932. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 38. Zhu, BF. Some problems in the theory of creep in concrete. J Hydraul Eng. 1982;3:3540.

  • 39. Zhu, BF. An implicit method for the stress analysis of concrete structures considering the effect of creep. J Hydraul Eng. 1983;5:4046.

    • Search Google Scholar
    • Export Citation
  • 40. Bazant, ZP, Wittmann, FH. Creep and shrinkage in concrete structures. Chichester, New York, Brisbane, Toronto, Singapore: Wiley; 1982.

    • Search Google Scholar
    • Export Citation
  • 41. Bernander S . Practical measure to avoiding early age thermal cracking in concrete structures. RILEM;. 1997. Report No.: TC 119-TCE.

    • Search Google Scholar
    • Export Citation
  • 42. Heimdal E , Kanstad T, Kompen R. Maridal cuvert Norway-field tests I: division of Structural Engineering. Lulea University of Technology; 2001. Report No.: BE96-3843.

    • Search Google Scholar
    • Export Citation
  • 43. Heimdal E , Kanstad T, Kompen R. Maridal cuvert Norway-field tests II: division of Structural Engineering. Lulea University of Technology;. 2001. Report No.: BE96-3843.

    • Search Google Scholar
    • Export Citation
  • 44. Lee, Y, Kim, J-K. Numerical analysis of the early age behavior of concrete structures with a hydration based microplane model. Comput Struct. 2009;87:10851101. .

    • Crossref
    • Search Google Scholar
    • Export Citation