View More View Less
  • 1 Physics Department, College of Science, Qassim University, P. O. 6644, 51452, Qassim, Saudi Arabia
  • | 2 Department of Physics, Al-Azahar University, Assiut 71542, Egypt
Restricted access

Abstract

The glass formation and devitrification of intermediate alloys in the Sb–Ge–Se system were studied by differential scanning calorimetry. A comparison of various simple quantitative methods to assess the level of stability of the glassy materials in the bove mentioned system is presented. All of these methods are based on characteristic temperatures, such as the glass transition temperature, Tg, the onset temperature of crystallization, Tin, the temperature corresponding to the maximum crystallization rate, Tp, or the melting temperature, Tm. In this case, kgl may be more suitable for estimating the glass thermal stability in above composition range than ΩT. In this work the parameter Kr(T) is added to the stability criteria. The thermal stability of some ternary compounds of the Sb–Ge–Se type has been evaluated experimentally and correlated with the activation energies of crystallization by this kinetic criterion and compared with those evaluated by other criteria. All the results of criteria and kinetic parameter Kr(T) confirm that the thermal stability decrease with increasing Sb content in the glassy system. The crystallization results are analyzed and both the activation energy of crystallization process and the crystallization mechanism are characterized. Finally, identification of the crystalline phases was made by recording the X-ray diffraction pattern of the transformed material. This pattern shows the existence of microcrystallites of two phases, the first is germanium Selenide GeSe2 and the second is Sb2Se3 in amorphous matrix for annealed of Sb2.5Ge22.5Se75 and Sb10Ge15Se75 glass.

  • 1. Tanaka, K, Osaka, Y, Sugi, M, Iizima, S, Kikuchi, M. Kinetics of growth of conductive filament in As-Te-Ge glasses. J Non-Cryst Solids. 1973;12:100114. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 2. Shaaban, ER. Non-isothermal crystallization kinetic studies on a ternary, Sb0.14As0.38Se0.48 chalcogenide semi-conducting glass. Phys B. 2006;373:211216. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 3. Sugiyama, Y, Chiba, R, Fugimori, S, Funakoski, N. Crystallization process of In-Te alloy films for optical recording. J Non-Cryst Solids. 1990;122:8389. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 4. Bindra, KS, Suri, N, Kamboj, MS, Thangaraj, R. Structural and transport properties of amorphous Se-Sb-Ag chalcogenide alloys and thin films. Thin Solid Films. 2002;516:179182. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 5. Savage, JA, Webber, PJ, Pitt, AM. An assessment of Ge-Sb-Se glasses as 8 to 12μm infra-red optical materials. J Mater Sci. 1978;13:859864. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 6. Giridhar, A, Narasimham, PSL, Mahadevan, S. Electrical properties of Ge-Sb-Se glasses. J Non-Cryst Solids. 1980;37:165179. .

  • 7. Shaaban, ER, Dessouky, MT, Abousehly, AM. 2008 The effect of Bi content on the thermal stability and crystallization of Se-Te chalcogenide glass. Philos.l Mag. 88:10991100. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8. Shaaban ER , Dessouky MT, Abousehly AM. Glass forming tendency in ternary GexAs20Te80−x glasses examined using differential scanning calorimetry. J Phys Condens Matter. 2007;19:096212.

    • Search Google Scholar
    • Export Citation
  • 9. Sakka, S, Mackenzie, JD. Relation between apparent glass transition temperature and liquids temperature for inorganic glasses. J Non-Cryst Solids. 1971;6:145162. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10. Dietzel, A. Glass structure and glass properties. Glasstech. 1968;22:41.

  • 11. Hruby, A. Evaluation of glass-forming tendency by means of DTA. Czech J Phys B. 1972;22: 22 11871193. .

  • 12. Saad, M, Poulain, M. Glass forming ability criterion. Mater Sci Forum. 1987;19:11 .

  • 13. Surinach, S, Baro, MD, Clavaguera-Mora, MT, Clavaguera, N. Glass formation and crystallization in the GeSe2-Sb2Te3 system. J Mater Sci. 1984;19:30053012. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 14. Hu, L, Jiang, Z, Chin, J. A new criterion for crystallization of glass. Ceram Soc. 1990;18:315321.

  • 15. Vazquez, J, Lopez-Alemany, PL, Villares, P, Jimenez-Garay, R. Evaluation of the glass forming ability of some alloys in the Sb-As-Se system by differential scanning calorimetry, J. Alloys Compd. 2003;354:153158. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 16. Shaaban, ER, Kansal, I, Shapaan, M, Ferreira, JMF. Thermal stability and crystallization kinetics of ternary Se-Te-Sb semiconducting glassy alloys. J Therm Anal Calorim. 2009;98:347354. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 17. Shaaban, ER, Shapaan, M, Saddeek, YB. Structural and thermal stability criteria of Bi2O3-B2O3 glasses. J Phys Condens Matter. 2008;20:155108 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 18. Kissinger, HE. Reaction kinetics in differential thermal analysis. Anal Chem. 1957;29: 11 17021706. .

  • 19. Shaaban, ER, Kaid, MF, Moustafa, E, Adel, A. Effect of composition variation on the optical properties of Sb-Ge-Se thin films. J Phys D. 2008;41:53125301 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 20. Vazquez, J, Lopez-Alemany, PL, Villares, P, Jimenez-Garay, R. Generalization of the Avrami equation for the analysis of nonisothermal transformation kinetics. Application to the crystallization of the Cu0.20As0.30Se0.50 alloy. J Phys Chem Solids. 2000;61:493500. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 21. Johnson, WA, Mehl, RF. Reaction kinetics in processes of nucleation and growth. Trans Am Inst Min Met Eng. 1939;135:416458.

  • 22. Avrami, M. Kinetics of phase change. J Chem Phys. 1940;8:212224. .

  • 23. Avrami, M. Granulation, phase change, and microstructure kinetics of phase change III. J Chem Phys. 1941;9:177184. .

  • 24. Sanchez-Jimenez, PE, Criado, JM, Perez-Maqueda, LA. Kissinger kinetic analysis of data obtained under different heating schedules. J Therm Anal Calorim. 2008;94:427432. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 25. Wagner, C, Villanes, P, Va′zquez, J, Jirnenex-Caray, R. Some methods for kinetic studies of non-isothermal crystallization in Sn0.08As0.26Se0.66 alloy. Mater Lett. 1993;19:370375. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 26. Gao, YQ, Wang, W, Zheng, FQ, Liu, X. On the crystallization kinetics of Pd80B4Si16 glass. J Non-Cryst Solids. 1986;81:135139. .

  • 27. Matusita, K, Saka, S. Kinetic study of crystallization of glass by differential thermal analysis—criterion on application of Kissinger plot. J Non-Cryst Solids. 1980;38–39:741746. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 28. Mahadevan, S, Giridhar, A, Sing, AK. Calorimetric measurements on As-Sb-Se glasses. J Non-Cryst Solids. 1986;88:1134. .

Manuscript Submission: HERE

  • Impact Factor (2019): 2.731
  • Scimago Journal Rank (2019): 0.415
  • SJR Hirsch-Index (2019): 87
  • SJR Quartile Score (2019): Q3 Condensed Matter Physics
  • SJR Quartile Score (2019): Q3 Physical and Theoretical Chemistry
  • Impact Factor (2018): 2.471
  • Scimago Journal Rank (2018): 0.634
  • SJR Hirsch-Index (2018): 78
  • SJR Quartile Score (2018): Q2 Condensed Matter Physics
  • SJR Quartile Score (2018): Q2 Physical and Theoretical Chemistry

For subscription options, please visit the website of Springer.

Journal of Thermal Analysis and Calorimetry
Language English
Size A4
Year of
Foundation
1969
Volumes
per Year
4
Issues
per Year
24
Founder Akadémiai Kiadó
Founder's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Publisher Akadémiai Kiadó
Springer Nature Switzerland AG
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
CH-6330 Cham, Switzerland Gewerbestrasse 11.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 1388-6150 (Print)
ISSN 1588-2926 (Online)