Authors:
A. ZalgaDepartment of General and Inorganic Chemistry, Vilnius University, Naugarduko 24, 03225, Vilnius, Lithuania

Search for other papers by A. Zalga in
Current site
Google Scholar
PubMed
Close
,
Z. MoravecDepartment of Chemistry, Masaryk Brno University, Kotlarska 2, 61137, Brno, Czech Republic

Search for other papers by Z. Moravec in
Current site
Google Scholar
PubMed
Close
,
J. PinkasDepartment of Chemistry, Masaryk Brno University, Kotlarska 2, 61137, Brno, Czech Republic

Search for other papers by J. Pinkas in
Current site
Google Scholar
PubMed
Close
, and
A. KareivaDepartment of General and Inorganic Chemistry, Vilnius University, Naugarduko 24, 03225, Vilnius, Lithuania

Search for other papers by A. Kareiva in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The preparation and characterization of the M′–M′′–O nitrate–tartrate (M′ = Ca, Ba, Gd and M′ = W, Mo) precursor gels synthesized by simple, inexpensive, and environmentally benign aqueous sol–gel method is reported. The obtained gels were studied by thermal (TG/DSC) analysis. TG/DSC measurements revealed the possible decomposition pathway of synthesized M′–M′′–O nitrate–tartrate gels. For the synthesis of different metal tungstates and molybdates, the precursor gels were calcined at different temperatures (650, 800, and 900 °C). According to the X-ray diffraction (XRD) analysis data, the crystalline compounds CaMo1-xWxO4 doped with Ce3+ ions, BaMo1-xWxO4 doped with Eu3+ ions and Gd2Mo3O12 were obtained from nitrate–tartrate gels annealed at 650–900 °C temperatures. The XRD data confirmed that the fully crystalline single-phase powellite, scheelite, or Gd2(MoO4)3 structures were formed already at 650 °C. Therefore, the suggested sol–gel method based on the complexation of metal ions with tartaric acid is suitable for the preparation of mixed tungstates–molybdates at relatively low temperature in comparison with solid-state synthesis.

  • 1. Wang, Z, Li, X, Wang, G, Song, M, Wei, Q, Wang, G, Long, X. Growth and spectral properties of Tm3+/Er3+:NaGd(MoO4)2 single crystal. J Lumin. 2008;128:451456. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 2. Forster, PL, Lugao, AB, Brito, HF, Parra, DF. Calorimetric investigations of luminescent films polycarbonate (PC) doped with europium complex [Eu(TTA)3(H2O)2]. J Therm Anal Calorim. 2009;97:497502. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 3. Gao, X, Wang, Y, Wang, D, Liu, B. 2009 Luminescent properties of KGd1−x(WO4)2:Eu x 3+ and KGd1−x(WO4)2−y(MoO4)y:Eu x 3+ phosphors in UV–VUV regions. J Lumin. 129:840843. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 4. Chiu, CH, Wang, MF, Lee, CS, Chen, TM. 2007 Structural, spectroscopic and photoluminescence studies of LiEu(WO4)2−x(MoO4)x as a near-UV convertible phosphor. Solid State Chem. 180:619627. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 5. Justel, T, Nikol, H, Ronda, C. New developments in the field of luminescent materials for lighting and displays. Angew Chem Int Ed. 1998;37:30853103. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 6. Zhou J , Gong L, Deng SZ, Chen J, She JC, Xu NS, Yang RS, Wang ZL. Growth and field-emission property of tungsten oxide nanotip arrays. Appl Phys Lett. 2005. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7. Zhong, JP, Liang, HB, Han, B, Su, Q, Tao, Y. NaGd(PO3)4:Tb3+—A new promising green phosphor for PDPs application. Chem Phys Lett. 2008;453:192196. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8. Wang, Z, Liang, H, Wang, Q, Luo, L, Gong, M. 2009 Luminescent properties of Tb3+ activated double molybdates and tungstates. Mater Sci Eng B. 164:120123. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 9. Liao, JS, Qiu, B, Wen, HR, You, WX. Photoluminescence green in microspheres of CaWO4:Tb3+ processed in conventional hydrothermal. Opt Mater. 2009;31:15131516. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10. Lei, F, Yan, B. 2009 Hydrothermal synthesis and luminescence of CaMO4:RE3+ (M=W, Mo; RE=Eu, Tb) submicro-phosphors. Solid State Chem. 181:855862. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11. Wei, Q, Chen, D. 2009 Luminescence properties of Eu3+ and Sm3+ coactivated Gd(III) tungstate phosphor for light-emitting diodes. Opt Laser Technol. 41:783787. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 12. Fu, L, Liu, ZM, Liu, YQ, Han, BX, Wang, JQ, Hu, PA, Cao, LC, Zhu, DB. 2004 Coating carbon nanotubes with rare earth oxide multiwalled nanotubes. Adv Mater. 16:350352. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13. Tang, Z, Zhou, L, Wang, F, Zhou, L. 2009 Synthesis, characterization and luminescence study of Eu(III) tungstates and molybdates nanotubes using carbon nanotubes as templates. Spectrochim Acta. 72:348355. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 14. Guo, C, Zhang, W, Luan, L, Chen, T, Cheng, H, Huang, D. 2008 A promising red-emitting phosphor for white light emitting diodes prepared by sol–gel method. Sensors Actuators B. 133:3339. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15. Tomaszewicz, E, Dabrowska, G. New cadmium and rare-earth metal molybdato-tungstates with scheelite-type structure. J Therm Anal Calorim. 2010;101:417422. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 16. Wang, XX, Xian, YL, Shi, JX, Su, Q, Gong, ML. 2007 The potential red emitting Gd2−yEuy (WO4)3−x(MoO4)x phosphors for UV InGaN-based light-emitting diode. Mater Sci Eng B. 140:6972. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 17. Wang, QM, Yan, B. 2005 Hydrothermal mild synthesis of microrod crystalline YxGd2−x(MoO4)3:Eu3+ phosphors derived from facile co-precipitation precursors. Mater Chem Phys. 94:241244. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 18. Wang, Z, Liang, H, Zhou, L, Wu, H, Gong, M, Su, Q. Luminescence of (Li0.333Na0.334K0.333)Eu(MoO4)2 and its application in near UV InGaN-based light-emitting diode. Chem Phys Lett. 2005;412:313316. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19. Marques, APA, Longo, VM, Melo, DMA, Pizani, PS, Leite, ER, Varela, JA, Longo, E. 2008 Shape controlled synthesis of CaMoO4 thin films and their photoluminescence property. J Solid State Chem. 181:12491257. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 20. Yang, P, Yao, GQ, Lin, JH. Photoluminescence and combustion synthesis of CaMoO4 doped with Pb2+. Inorg Chem Commun. 2004;7:389391. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 21. Jia, GH, Tu, CY, You, ZY, Li, JF, Zhu, ZJ, Wang, Y, Wu, BC. Czochralski technique growth of pure and rare-earth-doped SrWO4 crystals. J Cryst Growth. 2004;273:220225. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 22. Byun HJ , Song WS, Kim YS, Yang H. Solvothermally grown Ce3+-doped Y3Al5O12 colloidal nanocrystals: spectral variations and white LED characteristics. J Phys D Appl Phys. 2010. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 23. Thongtem, T, Kaowphong, S, Thongtem, S. 2008 Influence of cetyltrimethylammonium bromide on the morphology of AWO4 (A=Ca, Sr) prepared by cyclic microwave irradiation. Appl Surf Sci. 254:77657769. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 24. Sivakumar, R, Raj, A, Subramanian, B, Jayachandran, M, Trivedi, DC, Sanjeeviraja, C. 2004 Preparation and characterization of spray deposited n-type WO3 thin films for electrochromic devices. Mater Res Bull. 39:14791489. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 25. Gong, Q, Li, G, Qian, X, Cao, H, Du, W, Ma, X. 2006 Synthesis of single crystal CdMoO4 octahedral microparticles via microemulsion-mediated route. Colloid J Interface Sci. 304:408412. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 26. Sun, Y, Ma, J, Jiang, X, Fang, J, Song, Z, Gao, C, Liu, Z. 2010 Ethylene glycol-assisted electrochemical synthesis of CaMoO4 crystallites with different morphology and their luminescent properties. Solid State Sci. 12:12831286. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 27. Phuruangrat, A, Thongtem, T, Thongtem, S. 2010 Analysis of lead molybdate and lead tungstate synthesized by a sonochemical method. Curr Appl Phys. 10:342345. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 28. Mackenzie, JD, Bescher, EP. Chemical routes in the synthesis of nanomaterials using the sol–gel process. Acc Chem Res. 2007;40:810818. .

  • 29. Parhi, P, Karthik, TN, Manivannan, V. 2008 Synthesis and characterization of metal tungstates by novel solid-state metathetic approach. J Alloys Compd. 465:380386. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 30. Zalga, A, Beganskiene, A, Kareiva, A. 2007 Sol-gel synthesis and superconducting properties of Bi-2212 high-TC superconductors. Polish J Chem. 81:15471553.

    • Search Google Scholar
    • Export Citation
  • 31. Predoana, L, Malic, B, Zaharescu, M. LaCoO3 formation from precursors obtained by water-based sol-gel method with citric acid. J Therm Anal Calorim. 2009;98:361366. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 32. Waqas, H, Qureshi, AH. Low temperature sintering study of nanosized Mn-Zn ferrites synthesized by sol-gel auto combustion process. J Therm Anal Calorim. 2010;100:529535. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 33. Zalga, A, Reklaitis, J, Norkus, E, Beganskiene, A, Kareiva, A. A comparative study of YBa2Cu4O8 (Y-124) superconductors prepared by a sol–gel method. Chem Phys. 2006;327:220228. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 34. Kodaira, CA, Brito, HF, Felinto, MCFC. 2003 Luminescence investigation of Eu3+ ion in the RE2(WO4)3 matrix (RE=La and Gd) produced using the Pechini method. J Solid State Chem. 171:401407. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 35. Kareiva, A, Karppinen, M, Niinistö, L. 1994 Sol–gel synthesis of superconducting YBa2Cu4O8 using acetate and tartrate precursors. J Mater Chem. 4:12671270. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 36. Madarasz, J, Leskelä, T, Rautanen, J, Niinistö, L. 1996 Oxidation of alkaline-earth-metal sulfide powders and thin films. J Mater Chem. 6:781787. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 37. Karppinen, M, Niinistö, L, Yamauchi, H. Studies on the oxygen stoichiometry in superconducting cuprates by thermoanalytical methods. J Therm Anal Calorim. 1997;48:11231141. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 38. Madarasz, J, Leskelä, T, Pokol, G, Niinistö, L. Thermally induced changes in the oxidation state of cerium(IV). A study of carbonate and chloro complexes. J Therm Anal Calorim. 1997;49:13471355. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 39. Kareiva, A. 1997 A thermogravimetric study of the stability and reduction of the precursors for mercury-based superconductors. Thermochim Acta. 298:155159. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 40. Van Bael, MK, Kareiva, A, Vanhoyland, G, Mullens, J, Franco, D, Yperman, J, Van Poucke, LC. 1999 Influence of calcium substitution on the formation and thermal stability of the YBa2Cu4O8 superconductor. Thermochim Acta. 340–341:407416. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 41. Tautkus, S, Kazlauskas, R, Kareiva, A. 2000 Thermogravimetric analysis—a powerful tool for the refinement of the synthesis process of Hg-based superconductors. Talanta. 52:189199. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 42. Krunks, M, Madarasz, J, Leskelä, T, Mere, A, Niinistö, L, Pokol, G. Study of zinc thiocarbamide chloride, a single-source precursor for zinc sulfide thin films by spray pyrolysis. J Therm Anal Calorim. 2003;72:497506. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 43. Nenartaviciene, G, Tonsuaadu, K, Jasaitis, D, Beganskiene, A, Kareiva, A. Preparation and characterization of superconducting YBa2(Cu1−xCrx)4O8 oxides by thermal analysis. J Therm Anal Calorim. 2007;90:173178. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 44. Acik, IO, Madarasz, J, Krunks, M, Tonsuaadu, K, Pokol, G, Niinistö, L. Titanium(IV) acetylacetonate xerogels for processing titania films. A thermoanalytical study. J Therm Anal Calorim. 2009;97:3945. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 45. Navarro, MC, Lagarrigue, MC, De Paoli, JM, Carbonio, RE, Gomez, MI. A new method of synthesis of BiFeO3 prepared by thermal decomposition of Bi[Fe(CN)6]·4H2O. J Therm Anal Calorim. 2010;102:655660. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 46. Varga, PP, Madarasz, J, Pokol, G. Evolved gas analysis in modelling studies of pre-sintering step in fabrication of ceramic alumina specimens. J Anal Appl Pyrol. 2010;87:231235. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 47. Frost, RL, Palmer, SJ, Grand, L-M. Synthesis and thermal analysis of indium-based hydrotalcites of formula Mg6In2(CO3)(OH)16·4H2O. J Therm Anal Calorim. 2010;101:859863. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 48. Malghe, YS. Nanosized SrTiO3 powder from oxalate precursor microwave aided synthesis and thermal characterization. J Therm Anal Calorim. 2010;102:831836. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Collapse
  • Expand

To see the editorial board, please visit the website of Springer Nature.

Manuscript Submission: HERE

For subscription options, please visit the website of Springer Nature.

Journal of Thermal Analysis and Calorimetry
Language English
Size A4
Year of
Foundation
1969
Volumes
per Year
1
Issues
per Year
24
Founder Akadémiai Kiadó
Founder's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Publisher Akadémiai Kiadó
Springer Nature Switzerland AG
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
CH-6330 Cham, Switzerland Gewerbestrasse 11.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 1388-6150 (Print)
ISSN 1588-2926 (Online)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Jun 2022 3 0 0
Jul 2022 1 0 1
Aug 2022 2 0 0
Sep 2022 1 0 0
Oct 2022 1 0 0
Nov 2022 1 0 0
Dec 2022 0 0 0