View More View Less
  • 1 Institute for Plasthermogrma Research, Bhat, Gandhinagar, Gujarat, 382428, India
  • | 2 National Institute for Interdisciplinary Science and Technology, CSIR, Thiruvananthapuram, India
Restricted access

Abstract

Blending cyanate ester (CE) with epoxy resins offers the possibility to manufacture radiation resistant insulations at a low price compared to pure CE materials. Therefore, it is of special interest to study the influence of the CE content and also the effect of catalyst on the curing behavior of these insulation systems. Here, we present the curing behavior of the CE–epoxy blend system studied by non-isothermal differential scanning calorimetry in combination with Fourier infra red (FTIR) spectroscopy. Effect of amount of catalyst, compositional change, heating rate on the conversion, and enthalpy change were studied. The activation energy (Ea) and pre-exponential factor (A), rate constant of different blend systems with and without catalyst, were computed from the modified Ozawa and Kissinger model equations using isoconversional methods. Studies suggested that cure-kinetic parameters calculated from both the models are found to be matching. It was observed that the activation energy is less in the case of catalyzed system than the uncatalyzed system. Predicting the cure profile of this resin system is important under a given set of conditions for achieving the desired, controlled polymerization. This is the first report on the studies of the cure-kinetic parameters of the CE–epoxy blend system, and these observations will definitely pave the way for tuning the process parameters and temperature profile for achieving the desired properties of these insulation systems in fusion relevant magnetic winding packs.

  • 1. Koizum, N, Hemmi, T, Matsui, K, Nakajimaa, H, Okunoa, K, Kunob, K, Nomotob, K. Critical issues for the manufacture of the ITER TF coil winding pack. Fusion Eng Des. 2009;84:210214. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 2. Hamerton, I, Hay, JN. Recent technological development in cyanate ester resin. High Perform Polym. 1998;10:163 .

  • 3. Nair, CPR, Mathew, D, Ninan, KN. Cyanate ester. Adv Polym Sci. 2001;155:199. .

  • 4. Herr, DE, Nkolic, NA, Schultz, RA. Chemistries for high reliability in electronics assemblies. High Perform Polym. 2001;13:79 .

  • 5. Fang, T, Shimp, DA. Polycyanate esters: science and application. Prog Polym Sci. 1995;20:61118. .

  • 6. Hamerton I . Chemistry and technology of cyanate ester resins, Chap. 3. Glasgow: Chapman & Hall, p. 77, 128, 173; 1994.

  • 7. Hamerton, I, Herman, H, Mudhar, AK, Chaplin, SJ. Studying water uptake effects in resins based on cyanate ester/bismaleimide blends. Elsevier Polym. 2000;41:16471656.

    • Search Google Scholar
    • Export Citation
  • 8. Grigat, E, Putters, R. Synthesis and reactions of cyanate ester. Angew Chem Int Ed. 1967;6:206218. .

  • 9. Grenier-Loustalot, MF, Lartigau. Molten state reactivity of difunctional cyanates: thermal and spectroscopic studies by liquid and solid CP-MAS 13C-NMR. J Polym Sci. 1997;35:3101.

    • Search Google Scholar
    • Export Citation
  • 10. Fyfe, CA, Niu, J, Rettig, SJ, Wang, DW, Poliks, MD. NMR investigations of the possible cross reactions between cyanate and epoxy resin. J Polym Sci. 1994;32:22032221.

    • Search Google Scholar
    • Export Citation
  • 11. Mathew, D, Nair, CPR, Ninan, KN. Bisphenol A dicyanate–novolac epoxy blend: cure characteristics, physical and mechanical properties, and application in composites. J Appl Polym Sci. 1999;74:16751685. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 12. Santhosh Kumara, KS, Reghunadhan Nair, CP, Ninan, KN. Investigations on the cure chemistry and polymer properties of benzoxazine–cyanate ester blends. Eur Polym J. 2009;45: 2 494502. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13. Coutinho, FMB, Rocha, MG. Kinetic study of the reaction between a hydroxylated polybutadiene and isocyanates in chlorobenzene. III. Reaction with dimer diacid diisocyanate (DDI). J Poly Sci. 1988;26:31673173.

    • Search Google Scholar
    • Export Citation
  • 14. Ramis, X, Salla, JM, Cadenato, A, Morancho, JM. Thermal analysis of polyolefin and liquid paraffin mixtures. J Therm Anal Calorim. 2003;72:707711. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15. Vinnik, RM, Roznyatovsky, VA. Kinetic method by using calorimetry to mechanism of epoxy-amine cure reaction. J Therm Anal Calorim. 2004;75:753755. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 16. Senger, JS, Yilgor, I, McGrath, JE, Patsiga, RA. Isocyanate–epoxy reactions in bulk and solution. J Appl Polym Sci. 1989;38:373382. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 17. Tanzer, W, Much, H, Ruhmann, R. Reaktionen poly poly funktionellen glycidthern. 1. Identifizierang der gebideten strukturemenate. Acta Polym. 1989;40:335340. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 18. Chu, F, Mckenna, T, Lu, S. Étude par DSC de la reticulation de systems DGEBA/polyacides. Eur Polym J. 1997;33:969975. .

  • 19. Inaki, M, Lorena, S, IIeana, BR. Cure kinetics of a cobalt catalyzed dicyanate ester monomer in air and argon atmospheres from DSC data. Thermochim Acta. 2004;417:1926. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 20. Prime, RB, Turi, EA. Thermal characterization of polymeric materials. New York: Academic Press; 1997 138017440.

  • 21. Florence, M, Loustalot, G, Lartigau, C. Influence of the stoichiometry of epoxy-cyanate systems (non catalyzed and catalyzed) on molten state reactivity. J Polym Sci A. 1997;35:31013115. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 22. Mathew, D, Nair, CPR, Krishnan, K, Ninan, KN. Catalysis of the cure reaction of bisphenol A dicyanate: a DSC study. J Polym Sci A. 1999;37:11031114. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 23. Martín, JL, Cadenato, A, Salla, JM. Comparative studies on the non-isothermal DSC curing kinetics of an unsaturated polyester resin using free radicals and empirical models. Thermochim Acta. 1997;306:21152126. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 24. Simon, SL. Non-isothermal DSC curing kinetics. Thermochim Acta. 2007;415:21252147.

  • 25. Bauer, J, Bauer, M. Statistical structural model for the gelation behaviour of cyanate–epoxy polyreactions. Acta Polym. 1988;39:548551. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 26. Margit, H, Karger-Kocsis, J, Holst, M. Influence of fillers and additives on the cure kinetics of an epoxy/anhydride resin. Eur Polym J. 2007;43:1681178.

    • Search Google Scholar
    • Export Citation
  • 27. Bauer, M, Bauer, J, Ruhmann, R, Kuhn, G. Reaktionen poly funktioneller cyansaureester mit poly funktionellen glycidthern Reacktions model. Acta Polym. 1989;40:397401. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 28. Senger, JS, Yilgor, I, McGrath, JE, Patsiga, RA. Isocyanate–epoxy reactions in bulk and solution. J Appl Polym Sci. 1989;38:373382. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 29. Liu, H, George, GA. Studies on the gelation of photocatalysed dicyanate ester resins. Polymer. 1996;16:3675 .

  • 30. Lopez, M, Blanco, M, Vazquez, A, Ramos, JA, Arbelaiz, A, Echeverria, JM, Gabilondo, N, Mondragon, I. Isoconversional kinetic analysis of Resol-clay nano-composites. J Therm Anal Calorim. 2009;96:567573. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 31. Sheng, X, Akinc, M, Kessler, MR. Cure kinetics of thermosetting bisphenol E cyanate ester. J Therm Anal Calorim. 2008;93:7785. .

Manuscript Submission: HERE

  • Impact Factor (2019): 2.731
  • Scimago Journal Rank (2019): 0.415
  • SJR Hirsch-Index (2019): 87
  • SJR Quartile Score (2019): Q3 Condensed Matter Physics
  • SJR Quartile Score (2019): Q3 Physical and Theoretical Chemistry
  • Impact Factor (2018): 2.471
  • Scimago Journal Rank (2018): 0.634
  • SJR Hirsch-Index (2018): 78
  • SJR Quartile Score (2018): Q2 Condensed Matter Physics
  • SJR Quartile Score (2018): Q2 Physical and Theoretical Chemistry

For subscription options, please visit the website of Springer.

Journal of Thermal Analysis and Calorimetry
Language English
Size A4
Year of
Foundation
1969
Volumes
per Year
4
Issues
per Year
24
Founder Akadémiai Kiadó
Founder's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Publisher Akadémiai Kiadó
Springer Nature Switzerland AG
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
CH-6330 Cham, Switzerland Gewerbestrasse 11.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 1388-6150 (Print)
ISSN 1588-2926 (Online)