Authors:
K. Chrissafis Solid State Physics Department, School of Physics, Aristotle University of Thessaloniki, 541 24, Thessaloniki, Macedonia, Greece

Search for other papers by K. Chrissafis in
Current site
Google Scholar
PubMed
Close
,
E. Pavlidou Solid State Physics Department, School of Physics, Aristotle University of Thessaloniki, 541 24, Thessaloniki, Macedonia, Greece

Search for other papers by E. Pavlidou in
Current site
Google Scholar
PubMed
Close
,
K. M. Paraskevopoulos Solid State Physics Department, School of Physics, Aristotle University of Thessaloniki, 541 24, Thessaloniki, Macedonia, Greece

Search for other papers by K. M. Paraskevopoulos in
Current site
Google Scholar
PubMed
Close
,
T. Beslikas 2nd Orthopedic Department, Aristotle University of Thessaloniki, Thessaloniki, Greece

Search for other papers by T. Beslikas in
Current site
Google Scholar
PubMed
Close
,
N. Nianias Laboratory of Organic Chemical Technology, Department of Chemistry, Aristotle University of Thessaloniki, 541 24, Thessaloniki, Macedonia, Greece

Search for other papers by N. Nianias in
Current site
Google Scholar
PubMed
Close
, and
D. Bikiaris Laboratory of Organic Chemical Technology, Department of Chemistry, Aristotle University of Thessaloniki, 541 24, Thessaloniki, Macedonia, Greece

Search for other papers by D. Bikiaris in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Nanocomposites of poly(l-lactic acid) (PLLA) containing 2.5 wt% of fumed silica nanoparticles (SiO2) and organically modified montmorillonite (OMMT) were prepared by solved evaporation method. From SEM micrographs it was observed that both nanoparticles were well dispersed into PLLA matrix. All nanocomposites exhibited higher mechanical properties compared to neat PLLA, except elongation at break, indicating that nanoparticles can act as efficient reinforcing agents. Nanoparticles affect, also, the thermal properties of PLLA and especially the crystallization rate, which in all nanocomposites is faster than that of neat PLLA. From the thermogravimetric curves it can be seen that neat PLLA nanocomposites present a relatively better thermostability than PLLA, and this was also verified from the calculation of activation energy (E). From the variation of E with increasing degree of conversion it was found that PLLA/nanocomposites decomposition takes place with a complex reaction mechanism, with the participation of two different mechanisms. The combination of models, nth order and nth order with autocatalysis (Fn–Cn), for PLLA and PLLA/OMMT as well as the combination of Fn–Fn for PLLA/SiO2 give the better results. For the PLLA/OMMT the values of the E for both mechanisms are higher than neat PLLA. For the PLLA/SiO2 nanocomposite the value of the E is higher than the corresponding value for PLLA, for the first area of mass loss, while the E of the second mechanism has a lower value.

  • 1. Hayashi, T. Biodegradable polymers for biomedical uses. Prog Polym Sci. 1994;19:663702 .

  • 2. Rezwan, K, Chen, QZ, Blaker, JJ, Boccaccini, AR. Biodegradable, bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering. Biomaterials 2006 27:34133437 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 3. Balasundaram, G, Webster, TJ. An overview of nano-polymers for orthopedic applications. Macromol Biosci 2007 7:635642 .

  • 4. Boccaccini, AR, Gerhardt, LS, Rebeling, S, Blaker, JJ. Fabrication, characterization and assessment of bioactivity of poly(d/l-lactic acid) (PDLLA)/TiO2 nanocomposite films. Compos A 2005 36:7217 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 5. Abarrategi, A, Gutierrez, M, Moreno-Viccente, C, Hortiguala, MJ, Ramos, V, Lopez-Lacomba, JL, Ferrer, M, Del Monte, F. Multiwall carbon nanotube scaffold for tissue engineering purposes. Biomaterials 2008 29:94102 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 6. Kotela, I, Podporska, J, Soltysiak, E, Konsztowicz, KJ, Blazewicz, M. Polymer nanocomposites for bone tissue substitutes. Ceram Int 2009 35:24752480 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7. Agrawal, M, Ray, RB. Biodegradable polymeric scaffolds for musculoskeletal tissue engineering. J Biomed Mater Res 2001 55:141150 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8. Wei, G, Ma, PX. Structure and properties of nano-hydroxyapatite/polymer composite scaffolds for bone tissue engineering. Biomaterials 2004 25:47494757 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 9. Satyanarayana, D, Chatterji, PR. Biodegradable polymers: challenges and strategies. J Macromol Sci Rev Macromol Chem Phys 1993 C33:39368.

    • Search Google Scholar
    • Export Citation
  • 10. Cheung, HY, Lau, KT, Lu, TP, Hui, D. A critical review on polymer-based bio-engineered materials for scaffold development. Compos B Eng 2007 38:291300 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11. Bleach, NC, Nazhat, SN, Tanner, KE, Kellomäki, M, Törmälä, P. Effect of filler content on mechanical and dynamic mechanical properties of particulate biphasic calcium phosphate—polylactide composites. Biomaterials 2002 23:15791585 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 12. Alexander, H, Langrana, N, Massengill, J, Weiss, A. Development of new methods for phalangeal fracture fixation. J Biomech 1981 14:377387 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13. Vassiliou, A, Papageorgiou, GZ, Achilias, DS, Bikiaris, DN. Non-isothermal crystallization kinetics of in situ prepared poly(∊-caprolactone)/surface-treated SiO2 nanocomposites. Macromol Chem Phys 2007 21:364376 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 14. Vassiliou, A, Chrissafis, K, Bikiaris, DN. In situ prepared PBSu/SiO2 nanocomposites. Study of thermal degradation mechanism. Thermochim Acta 2009 495:120128 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15. Yan, S, Yin, J, Yang, Y, Dai, Z, Ma, J, Chen, X. Surface-grafted silica linked with l-lactic acid oligomer: a novel nanofiller to improve the performance of biodegradable poly(l-lactide). Polymer 2007 48:16881694 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 16. Wu, CS, Liao, HT. Modification of biodegradable polylactide by silica and wood flour through a sol-gel process. J Appl Polym Sci 2008 109:21282138 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 17. Wu, L, Cao, D, Huang, Y, Li, B. Poly(l-lactic acid)/SiO2 nanocomposites via in situ melt polycondensation of l-lactic acid in the presence of acidic silica sol: preparation and characterization. Polymer 2008 49:742749 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 18. Zhou, Q, Xanthos, M. Nanosize and microsize clay effects on the kinetics of the thermal degradation of polylactides. Polym Degrad Stab 2009 94:327328 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19. Jiang, L, Zhang, J, Wolcott, MP. Comparison of polylactide/nano-sized calcium carbonate and polylactide/montmorillonite composites: reinforcing effects and toughening mechanisms. Polymer 2007 48:76327644 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 20. Wen, X, Lin, Y, Han, C, Zhang, K, Ran, X, Li, Y, Dong, L. Thermomechanical and optical properties of biodegradable poly(l-lactide)/silica nanocomposites by melt compounding. J Appl Polym Sci 2009 114:33793386 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 21. Chang, JH, An, YA, Sur, GS. Poly(lactic acid) nanocomposites with various organoclays. I. Thermomechanical properties, morphology, and gas permeability. J Polym Sci B Polym Phys 2003 41:94103 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 22. Migliaresi, CD, Cohn, D A De Lollis Fambri, L. Dynamic mechanical and calorimetric analysis of compression-molded PLLA of different molecular weights. Effect of thermal treatments. J Appl Polym Sci. 1991;43:8395 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 23. Gopakumar, TG, Lee, JA, Kontopoulou, M, Parent, JS. Influence of clay exfoliation on the physical properties of montmorillonite/polyethylene composites. Polymer 2002 43:54835491 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 24. Antoniadis, G, Paraskevopoulos, KM, Bikiaris, D, Chrissafis, K. Kinetics study of cold-crystallization of poly(ethylene terephthalate) nanocomposites with multi-walled carbon nanotubes. Thermochim Acta 2009 493:6875 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 25. Di, YW, Iannace, S, Di, ME, Nicolais, L. Poly(lactic acid)/organoclay nanocomposites: thermal, rheological properties and foam processing. J Polym Sci B Polym Phys 2005 43:689698 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 26. Chrissafis, K, Paraskevopoulos, KM, Papageorgiou, GZ, Bikiaris, DN. Thermal and dynamic mechanical behavior of bionanocomposites: fumed silica nanoparticles dispersed in poly(vinyl pyrrolidone), chitosan, and poly(vinyl alcohol). J Appl Polym Sci 2008 110:17391749 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 27. Chen, K, Wilkie, CA, Vyazovkin, S. Nanoconfinement revealed in degradation and relaxation studies of two structurally different polystyrene-clay systems. J Phys Chem B 2007 111:1268512692 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 28. Yoon, JT, Jeong, YG, Lee, SC, Min, BG. Influences of poly(lactic acid)-grafted carbon nanotube on thermal, mechanical, and electrical properties of poly(lactic acid). Polym Adv Technol 2009 20:631638 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 29. Krishnamachari, P, Zhang, J, Lou, J, Yan, J, Uitenham, L. Biodegradable poly(lactic Acid)/clay nanocomposites by melt intercalation: a study of morphological, thermal, and mechanical properties. Int J Polym Anal Charact 2009 14:336350 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 30. Chow, WS, Lok, SK. Thermal properties of poly(lactic acid)/organo-montmorillonite nanocomposites. J Therm Anal Calorim 2009 95:627632 .

  • 31. Zhang, J, Lou, J, Ilias, S, Krishnamachari, P, Yan, J. Thermal properties of poly(lactic acid) fumed silica nanocomposites: experiments and molecular dynamics simulations. Polymer 2008 49:23812386 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 32. McLauchlin, AR, Thomas, NL. Preparation and thermal characterization of poly(lactic acid) nanocomposites prepared from organoclays based on an amphoteric surfactant. Polym Degrad Stab 2009 94:868872 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 33. Chang, JH, An, YU, Cho, D, Giannelis, EP. Poly(lactic acid) nanocomposites: comparison of their properties with montmorillonite and synthetic mica. Polymer 2003 44:37153720 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 34. Vyazovkin, S. Model-free kinetics. Staying free of multiplying entities without necessity. J Therm Anal Calorim. 2007;83:4551 .

  • 35. Starink, MJ. On the applicability of isoconversion methods for obtaining the activation energy of reactions within a temperature-dependent equilibrium state. J Mater Sci. 1997;32:65056512 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 36. Ozawa, T. A new method of analyzing thermogravimetric data. Bull Chem Soc Jpn. 1965;38:18811886 .

  • 37. Flynn, JH, Wall, LA. General treatment of the thermogravimetry of polymers. J Res Natl Bur Stand Phys Chem 1966 70A:487523.

  • 38. Flynn, JH, Wall, LA. A quick, direct method for the determination of activation energy from thermogravimetric data. Polym Lett 1966 4:323328 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 39. Friedman, HL. Kinetics of thermal degradation of char-forming plastics from thermogravimetry. Application to a phenolic plastic. J Polym Sci C. 1964;6:183195.

    • Search Google Scholar
    • Export Citation
  • 40. Vyazovkin, S. Modification of the integral isoconversional method to account for variation in the activation energy. J Comput Chem. 2001;22:178183 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 41. Kissinger, HE. Reaction kinetics in differential thermal analysis. Anal Chem. 1957;29:17021708 .

  • 42. Zou, H, Yi, C, Wang, L, Liu, H, Xu, W. Thermal degradation of poly(lactic acid) measured by thermogravimetry coupled to Fourier transform infrared spectroscopy. J Therm Anal Calorim 2009 97:929935 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 43. Opfermann, J. Kinetic analysis using multivariate non-linear regression i. Basic concepts. J Therm Anal Calorim. 2000;60:641658 .

  • 44. Chrissafis, K, Paraskevopoulos, KM, Jannakoudakis, A, Beslikas, T, Bikiaris, D. Oxidized multi-walled carbon nanotubes as effective reinforcement and thermal stability agents of PLLA ligaments. J Appl Polym Sci 2010 118:27122721 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Collapse
  • Expand

To see the editorial board, please visit the website of Springer Nature.

Manuscript Submission: HERE

For subscription options, please visit the website of Springer Nature.

Journal of Thermal Analysis and Calorimetry
Language English
Size A4
Year of
Foundation
1969
Volumes
per Year
1
Issues
per Year
24
Founder Akadémiai Kiadó
Founder's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Publisher Akadémiai Kiadó
Springer Nature Switzerland AG
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
CH-6330 Cham, Switzerland Gewerbestrasse 11.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 1388-6150 (Print)
ISSN 1588-2926 (Online)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Jun 2024 9 0 0
Jul 2024 83 0 0
Aug 2024 46 0 0
Sep 2024 45 0 0
Oct 2024 223 0 0
Nov 2024 80 0 0
Dec 2024 2 0 0