View More View Less
  • 1 Microbiology Division, Central Leather Research Institute (Council of Scientific and Industrial Research), Adyar, Chennai 600020, Tamil Nadu, India
  • | 2 Chemical Laboratory, Central Leather Research Institute (Council of Scientific and Industrial Research), Adyar, Chennai 600020, Tamil Nadu, India
Restricted access

Abstract

This study emphasizes, cross-linking potential of a simple di-carboxylic acid, namely, oxalic acid with type I collagen for the preparation of collagen based biomaterial for clinical applications. Further the study discusses the characteristics features of the cross-linked material in comparison with the standard cross-linker. In addition, the study also demonstrates the role of ionic interactions in providing the thermal stability and tensile strength to the cross-linked biopolymer material. Type I collagen from rat tail tendon treated with oxalic acid at optimized concentrations provided a biopolymer material without changing the triple helical pattern of collagen (CD spectrum) and also with 6–7 fold increase in tensile strength than native collagen. FTIR spectral details demonstrate the ionic interactions between collagen and oxalic acid. Thermal stability analyses of oxalic acid cross-linked biopolymer revealed, high thermal stability compared to materials of glutaraldehyde cross-linked. The results of the study suggest oxalic acid as a suitable cross-linker for collagen and it cross-link with collagen through ionic interactions.

  • 1. Usha, R, Ramasami, T. Effect of crosslinking agents (basic chromium sulfate and formaldehyde) on the thermal and thermomechanical stability of rat tail tendon collagen fibre. Thermochim Acta. 2000;356: 1–2 5966. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 2. Sheu, M-T, Huang, J-C, Yeh, G-C, Ho, H-O. Characterization of collagen gel solutions and collagen matrices for cell culture. Biomaterials. 2001;22: 13 17131719. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 3. Miles, CA, Avery, NC, Rodin, VV, Bailey, AJ. The increase in denaturation temperature following cross-linking of collagen is caused by dehydration of the fibres. J Mol Biol. 2005;346: 2 551556. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 4. Nam, K, Kimura, T, Kishida, A. Controlling coupling reaction of EDC and NHS for preparation of collagen gels using ethanol/water co-solvents. Macromol Biosci. 2008;8:3237. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 5. Petite, H, Rault, I, Huc, A, Menasche, P, Herbage, D. Use of the acyl azide method for cross-linking collagen-rich tissues such as pericardium. J Biomed Mater Res. 1990;24: 2 179187. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 6. Saito, H, Murabayashi, S, Mitamura, Y, Taguchi, T. Characterization of alkali-treated collagen gels prepared by different crosslinkers. J Mater Sci Mater Med. 2008;19:12971305. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7. Nunes, PS, Bezerra, MLS, Costa, LP, Cardoso, JC, RLC Albuquerque Jr, Rodrigues, MO, Barin, GB, Silva, FAD, Jo, AASA. Thermal characterization of usnic acid/collagen-based films. J Therm Anal Calorim. 2010;99:10111014. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8. Mitra, T, Sailakshmi, G, Gnanamani, A, Raja, ST, Thiruselvi, T, Mangala Gowri, V, Selvaraj, NV, Ramesh, G, Mandal, AB. Preparation and characterization of a thermostable and biodegradable biopolymers using natural cross-linker. Int J Biol Macromol. 2011;48: 2 276285. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 9. Langmaier, F, Mokrejs, P, Mladek, M. Heat-treated biodegradable films and foils of collagen hydrolysate crosslinked with dialdehyde starch. J Therm Anal Calorim. 2010;102:3742. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10. Weadock, KS, Miller, EJ, Bellincampi, LD, Zawadsky, JP, Dunn, MG. Physical crosslinking of collagen fibers: comparison of ultraviolet irradiation and dehydrothermal treatment. J Biomed Mater Res. 1995;29: 11 13731379. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11. Olde Damink, LHH, Dijkstra, PJ, van Luyn, MJA, van Wachem, PB, Nieuwenhuis, P, Feijen, J. Influence of ethylene oxide gas treatment on the in vitro degradation behavior of dermal sheep collagen. J Biomed Mater Res. 1995;29: 2 149155. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 12. Melina, H, Heuzey, MC, Begin, A. Viscoelastic properties of phosphoric and oxalic acid-based chitosan hydrogels. Rheol Acta. 2006;45:659675. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13. Skotak, M, Leonov, AP, Gustavo, L, Sandra, N, Anuradha, S. Biocompatible and biodegradable ultrafine fibrillar scaffold materials for tissue engineering by facile grafting of l-lactide onto chitosan. Biomacromolecules. 2008;9: 7 19021908. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 14. Jaklenec, A, Wan, E, Murray, ME, Mathiowitz, E. Novel scaffolds fabricated from protein-loaded microspheres for tissue engineering. Biomaterials. 2008;29: 2 185192. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15. Ghaffari, A, Navaee, K, Oskoui, M, Bayati, K, Rafiee-Tehrani, M. Preparation and characterization of free mixed-film of pectin/chitosan/Eudragit RS intended for sigmoidal drug delivery. Eur J Pharm Biopharm. 2007;67: 1 175186. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 16. Wei, X, Sun, N, Wu, B, Yin, C, Wu, W. Sigmoidal release of indomethacin from pectin matrix tablets: effect of in situ crosslinking by calcium cations. Int J Pharm. 2006;318: 1–2 132138. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 17. Tharanathan, RN. Biodegradable films and composite coatings: past, present and future. Trends Food Sci Technol. 2003;14: 3 7177. .

  • 18. Weber, CJ, Haugaard, V, Festersen, R, Bertelsen, G. Production and applications of biobased packaging materials for the food Industry. Food Addit Contam. 2002;19: 4 172177.

    • Search Google Scholar
    • Export Citation
  • 19. Chandrasekaran, G, Torchia, DA, Piez, KA. Preparation of intact monomeric collagen from tail, aorta and skin and the structure of the nonhelical ends in solution. J Biol Chem. 1976;251:60626067.

    • Search Google Scholar
    • Export Citation
  • 20. Lin, YK, Liu, DC. Comparison of physical–chemical properties of type I collagen from different species. Food Chem. 2006;99:244251. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 21. Pavia, DL, Lampman, GM, Kriz, GS. Introduction to spectroscopy. 3 USA: Thomson Learning, Inc; 2001.

  • 22. Puett, D. DTA and heals of hydration of some polypeptides. Biopolymers. 1967;5: 3 327330. .

  • 23. Venugopal, MG, Ramshaw, JAM, Braswell, E, Zhu, D, Brodsky, B. Electrostatic interactions in collagen-like triple-helical peptides. Biochemistry. 1994;33: 25 79487956. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 24. Sacca, B, Renner, C, Moroder, L. The chain register in heterotrimeric collagen peptides affects triple helix stability and folding kinetics. J Mol Biol. 2002;324: 2 309318. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 25. Madhan, B, Subramanian, V, Rao, JR, Nair, BU, Ramasami, T. Stabilization of collagen using plant polyphenol: role of catechin. Int J Biol Macromol. 2005;37: 1–2 4753. .

    • Crossref
    • Search Google Scholar
    • Export Citation