View More View Less
  • 1 School of Materials Science and Engineering, Central South University, Changsha, Hunan 410083, People’s Republic of China
Restricted access

Abstract

A number of solution-casted poly(vinylidenefluoride–chlorotrifluoroethylene–trifluoroethylene) [P(VDF–CTFE–TrFE)] terpolymer films with different CTFE content have been characterized by a series of thermal analysis techniques, including thermogravimetric analysis (TG), differential scanning calorimetry, dynamic mechanical analysis (DMA) and thermal mechanical analysis (TMA). The work intends to provide more comprehensive information about thermal behavior of these ferroelectric polymers. TG results suggest that the introduction of the CTFE units slightly decreases the thermal stability of the polymer due to the instability of C–Cl bond during heating. DMA detected a relatively weak αa relaxation and a broad αc relaxation in the samples of low CTFE content. These two relaxation processes completely mixed together in the sample with high CTFE content, revealing the crystalline structures in the polymer, become a more imperfect and diffuse state as CTFE units increasing. The polymer with less CTFE units possesses an enhanced stiffness due to its higher degree of crystallinity. A contraction process after a slight amount of thermal expansion upon heating is detected by TMA, due to the release of internal tensile strain/stress generated during solidification of the films. The higher crystallinity of the polymer film generated the greater strain/stress, leading to the larger degree of shrinkage. Also, the higher melting point of the polymer with less CTFE units allows the film soften at a higher temperature.

  • 1. Herbert, JM, Glass, AM, Wang, TT. The application of ferroelectric polymers. New York: Chapman & Hall; 1988.

  • 2. Naber, RCG, Tanase, C, Blom, PWM, Gelinck, GH, Marsman, AW, Touwslager, FJ, et al. High-performance solution-processed polymer ferroelectric field-effect transistors. Nat Mater. 2005;4: 3 243248. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 3. Stadlober, B, Zirkl, M, Beutl, M, Leising, G, Bauer-Gogonea, S, Bauer, S. High-mobility pentacene organic field-effect transistors with a high-dielectric-constant fluorinated polymer film gate dielectric. Appl Phys Lett. 2005;86: 24 242902 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 4. Müller, K, Paloumpa, I, Henkel, K, Schmeisser, D. A polymer high-k dielectric insulator for organic field-effect transistors. J Appl Phys. 2005;98: 5 056104 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 5. Chu, B, Zhou, X, Ren, K, Neese, B, Lin, M, Wang, Q, et al. A dielectric polymer with high electric energy density and fast discharge speed. Science. 2006;313: 5785 334336. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 6. Lovinger, AJ. Ferroelectric polymers. Science. 1983;220: 4602 11151121. .

  • 7. Kawai, H. The piezoelectricity of poly(vinylidene fluoride). Jpn J Appl Phys. 1969;8: 7 975976. .

  • 8. Bergman, JG, McFee, JH, Crane, GR. Pyroelectricity and optical second harmonic generation in poly(vinylidene fluoride) films. Appl Phys Lett. 1971;18: 5 203205. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 9. Tamura, M, Ogasawara, K, Ono, N, Hagiwara, S. Piezoelectricity in uniaxially stretched poly (vinylidene fluoride). J Appl Phys. 1974;45: 9 37683771. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10. Yagi, T, Tatemoto, M, Sako, J-i. Transition behavior and dielectric properties in trifluoroethylene and vinylidene fluoride copolymers. Polym J. 1980;12: 4 209223. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11. Bune, AV, Fridkin, VM, Ducharme, S, Blinov, LM, Palto, SP, Sorokin, AV, et al. Two-dimensional ferroelectric films. Nature. 1998;391: 6670 874 .

  • 12. Zhang, QM, Bharti, V, Zhao, X. Giant electrostriction and relaxor ferroelectric behavior in electron-irradiated poly(vinylidene fluoride-trifluoroethylene) copolymer. Science. 1998;280: 5372 2101 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13. Tashiro, K, Tadokoro, H, Kobayashi, M. Structure and piezoelectricity of poly(vinylidene fluoride). Ferroelectrics. 1981;32: 1 167175. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 14. Nalwa, HS. Recent developments in ferroelectric polymers. J Macromol Sci Poly Rev. 1991;C31: 4 341432.

  • 15. Furukawa, T. Structure and functional properties of ferroelectric polymers. Adv Colloid Interface. 1997;71–72:183208. .

  • 16. Higashihata, Y, Sako, J, Yagi, T. Piezoelectricity of vinylidene fluoride-trifluoroethylene copolymers. Ferroelectrics. 1981;32: 1 8592. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 17. Furukawa, T. Ferroelectric behavior in the copolymer of vinylidenefluoride and trifluoroethylene. Jpn J Appl Phys. 1980;19: 2 109112. .

  • 18. Yamada, T, Ueda, T, Kitayama, T. Ferroelectric-to-paraelectric phase transition of vinylidene fluoride–trifluoroethylene copolymer. J Appl Phys. 1981;52: 2 948952. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19. Chung TC , Petchsuk A. Ferroelectric VDF/TrFE/CTFE terpolymers: synthesis and electric properties. In: Bar-Cohen Y, editor. Smart structures and materials 2001: electroactive polymer actuators and devices: The International Society for Optical Engineering; 2001. p. 11724.

    • Search Google Scholar
    • Export Citation
  • 20. Xu, H, Cheng, ZY, Olson, D, Mai, T, Zhang, QM, Kavarnos, G. Ferroelectric and electromechanical properties of poly(vinylidene–fluoride–trifluoroethylene–chlorotrifluoroethylene) terpolymer. Appl Phys Lett. 2001;78: 16 2360 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 21. Chung, TC, Petchsuk, A, Taylor, GW. Ferroelectric polymers with large electrostriction; based on semicrystalline VDF/TrFE/CTFE terpolymers. Ferroelectrics Lett. 2001;28: 5 135143. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 22. Chung, TC, Petchsuk, A. Synthesis and properties of ferroelectric fluoroterpolymers with Curie transition at ambient temperature. Macromolecules. 2002;35: 20 76787684. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 23. Xia, F, Cheng, Z, Xu, H, Li, H, Zhang, Q, Kavarnos, GJ, et al. High electromechanical responses in a poly(vinylidene fluoride-trifluoroethylene-chlorofluoroethylene) terpolymer. Adv Mater. 2002;14: 21 15741577. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 24. Buckley, GS, Roland, CM, Casalini, R, Petchsuk, A, Chung, TC. Electrostrictive properties of poly(vinylidenefluoride–trifluoroethylene–chlorotrifluoroethylene). Chem Mater. 2002;14: 6 25902593. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 25. Klein, RJ, Runt, J, Zhang, QM. Influence of crystallization conditions on the microstructure and electromechanical properties of poly(vinylidene fluoride–trifluoroethylene–chlorofluoroethylene) terpolymers. Macromolecules. 2003;36: 19 72207226. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 26. Bauer, F, Fousson, E, Zhang, QM, Lee, LM. Ferroelectric copolymers and terpolymers for electrostrictors: synthesis and properties. IEEE Trans Diel Elec Insu. 2004;11: 2 293298. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 27. Xu, H, Shen, D, Zhang, Q. Structural and ferroelectric response in vinylidene fluoride/trifluoroethylene/hexafluoropropylene terpolymers. Polymer. 2007;48: 7 21242129. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 28. Hulburt, JD, Feiring, AE. Trifluoroethylene deflagration. Chem Eng News. 1997;75: 51 6 .

  • 29. Lu, Y, Claude, J, Neese, B, Zhang, Q, Wang, Q. A modular approach to ferroelectric polymers with chemically tunable curie temperatures and dielectric constants. J Am Chem Soc. 2006;128: 25 81208121. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 30. Lu, Y, Claude, J, Zhang, Q, Wang, Q. Microstructures and dielectric properties of the ferroelectric Fluoropolymers synthesized via reductive dechlorination of poly(vinylidene fluoride-co-chlorotrifluoroethylene)s. Macromolecules. 2006;39: 20 69626968. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 31. Wang, Z, Zhang, Z, Chung, TCM. High dielectric VDF/TrFE/CTFE terpolymers prepared by hydrogenation of VDF/CTFE copolymers:synthesis and characterization. Macromolecules. 2006;39: 13 42684271. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 32. Lu, Y, Claude, J, Norena-Franco, LE, Wang, Q. Structural dependence of phase transition and dielectric relaxation in ferroelectric poly(vinylidene fluoride–chlorotrifluoroethylene–trifluoroethylene)s. J Phys Chem B. 2008;112: 34 1041110416. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 33. Li H , Tan K, Hao Z, He G. Preparation and crystallization behavior of poly(vinylidene fluoride-ter-chlorotrifluoroethylene-ter-trifluoroethylene). J Appl Polym Sci. (Accepted).

    • Search Google Scholar
    • Export Citation
  • 34. Sencadas, V, Lanceros-Me′ndez, S, Mano, JF. Thermal characterization of a vinylidene fluoride-trifluoroethylene (75–25) (%mol) copolymer film. J Non-Cryst Solids. 2006;352: 50–51 53765381. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 35. Varma, AJ, Deshpande, SV, Kondapalli, P. A comparative study of the thermal behavior of PVC, a series of synthesized chlorinated polyethylenes and HDPE. Polym Degrad Stabil. 1999;63: 1 13. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 36. Zulfiqar, S, Zulfiqar, M, Rizvi, M, Munir, A, McNeill, IC. Study of the thermal degradation of polychlorotrifluoroethylene, poly(vinylidene fluoride) and copolymers of chlorotrifluoroethylene and vinylidene fluoride. Polym Degrad Stabil. 1994;43: 3 423430. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 37. Mano, JF, Sencadas, V, Costa, AM, Lanceros-Méndez, S. Dynamic mechanical analysis and creep behaviour of β-PVDF films. Mater Sci Eng A. 2004;370: 1–2 336340. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 38. Sencadas, V, Lanceros-Méndez, S, Mano, JF. Characterization of poled and non-poled β-PVDF films using thermal analysis techniques. Thermochim Acta. 2004;424: 1–2 201207. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 39. Francis, LF, McCormick, AV, Vaessen, DM, Payne, JA. Development and measurement of stress in polymer coatings. J Mater Sci. 2002;37: 22 47174731. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 40. Diane M , Whitmore PM, editors. The development of internal stress in films of thermoplastic polymers cast from solution. Materials Research Society Symposium Proceedings; 1995.

    • Search Google Scholar
    • Export Citation
  • 41. Croll, SG. Internal stress in a solvent-cast thermoplastic coating. J Coat Technol. 1978;50: 638 3338.

  • 42. Croll, SG. The origin of residual internal stress in solvent-cast thermoplastic coatings. J Appl Polym Sci. 1979;23: 3 847858. .

Manuscript Submission: HERE

  • Impact Factor (2019): 2.731
  • Scimago Journal Rank (2019): 0.415
  • SJR Hirsch-Index (2019): 87
  • SJR Quartile Score (2019): Q3 Condensed Matter Physics
  • SJR Quartile Score (2019): Q3 Physical and Theoretical Chemistry
  • Impact Factor (2018): 2.471
  • Scimago Journal Rank (2018): 0.634
  • SJR Hirsch-Index (2018): 78
  • SJR Quartile Score (2018): Q2 Condensed Matter Physics
  • SJR Quartile Score (2018): Q2 Physical and Theoretical Chemistry

For subscription options, please visit the website of Springer.

Journal of Thermal Analysis and Calorimetry
Language English
Size A4
Year of
Foundation
1969
Volumes
per Year
4
Issues
per Year
24
Founder Akadémiai Kiadó
Founder's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Publisher Akadémiai Kiadó
Springer Nature Switzerland AG
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
CH-6330 Cham, Switzerland Gewerbestrasse 11.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 1388-6150 (Print)
ISSN 1588-2926 (Online)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Jan 2021 0 0 0
Feb 2021 0 0 0
Mar 2021 1 0 0
Apr 2021 1 0 0
May 2021 2 0 0
Jun 2021 1 0 0
Jul 2021 0 0 0