View More View Less
  • 1 Rubber Technology Center, Indian Institute of Technology-Kharagpur, Kharagpur, West Bengal, 721302, India
Restricted access

Abstract

The thermal stability of linear low density polyethylene (LLDPE)/ethylene methyl acrylate (EMA) blends was studied using thermogravimetry. The blend ratio as well as the presence of compatibilizer has significant effect on thermal stability of the blends. The compatibilization of the blends using LLDPE-g-MA has increased the degradation temperature. Phase morphology was found to be one of the most decisive factors that affected the thermal stability of both uncompatibilized and compatibilized blends. Dynamic mechanical behavior of the blend was studied by dynamic mechanical analysis. The storage modulus of the blends decreased with increase in EMA content. When compatibilized with LLDPE-g-MA the storage modulus of the blend increases. LLDPE-g-MA is an effective compatibilizer as it increases the thermal stability and modulus of the blend.

  • 1. Naskar, K, Mohanty, S, Nando, GB. Development of thin-walled halogen-free cable insulation and halogen-free fire-resistant low-smoke cable-sheathing compounds based on polyolefin elastomer and ethylene vinyl acetate blends. J Appl Polym Sci. 2007;104:28392848. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 2. Shukri, TM, Mosnacek, J, Basfar, AA, Bahattab, MA, Noireaux, P, Courdreuse, A. Flammability of blends of low-density polyethylene and ethylene vinyl acetate crosslinked by both dicumyl peroxide and ionizing radiation for wire and cable applications. J Appl Polym Sci. 2008;109:167173. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 3. Basfar, AA, Mosnacek, J, Shukri, TM, Bahattab, MA, Noireaux, P, Courdreuse, A. Mechanical and thermal properties of blends of low-density polyethylene and ethylene vinyl acetate crosslinked by both dicumyl peroxide and ionizing radiation for wire and cable applications. J Appl Polym Sci. 2008;107:642649. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 4. Mathew, AP, Packirisamy, S, Thomas, S. Studies on the thermal stability of natural rubber/polystyrene interpenetrating polymer networks: thermogravimetric analysis. Polym Degrad Stab. 2001;72:423439. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 5. Stack, S, Donogbue, OO, Birkinshaw, C. The thermal stability and thermal degradation of blends of syndiotactic polystyrene and polyphenylene ether. Polym Degrad Stab. 2003;79:2936. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 6. Vrandečić, NS, Klarić, I, Kovačić, T. Thermooxidative degradation of poly(vinyl chloride)/chlorinated polyethylene blends investigated by thermal analysis methods. Polym Degrad Stab. 2004;84:2330. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7. Moly, KA, Radusch, HJ, Androsh, A, Bhagawan, SS, Thomas, S. Nonisothermal crystallisation, melting behavior and wide angle X-ray scattering investigations on linear low density polyethylene (LLDPE)/ethylene vinyl acetate (EVA) blends: effects of compatibilisation and dynamic crosslinking. Eur Polym J. 2005;41:14101419. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8. Aouachria, K, Bensemra, NB. Thermo-oxidative dehydrochlorination of rigid and plasticised poly(vinyl chloride)/poly(methyl methacrylate) blends. Polym Degrad Stab. 2006;9:504511. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 9. Malik, P, Castro, M, Carrot, C. Thermal degradation during melt processing of poly(ethylene oxide), poly(vinylidenefluoride-co-hexafluoropropylene) and their blends in the presence of additives, for conducting applications. Polym Degrad Stab. 2006;91:634640. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10. Vijayalakshmi, SP, Madras, G. Thermal degradation of water soluble polymers and their binary blends. J Appl Polym Sci. 2006;101:233240. .

  • 11. Santra, RN, Mukundo, PG, Chaki, TK, Nando, GB. Thermogravimetric studies on miscible blends of ethylene-methyl acrylate copolymer (EMA) and polydimethylsiloxane rubber (PDMS). Thermochim Acta. 1993;219:283292. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 12. Lizymol, PP, Thomas, S. Thermal behaviour of polymer blends: a comparison of the thermal properties of miscible and immiscible systems. Polym Degrad Stab. 1993;4:5964. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13. Schnabel, W. Polymer degradation principles and applications. New York: Hanser; 1981.

  • 14. Mc Neill, IC. Comprehensive polymer science. 6 New York: Allen/Pergamon Press; 1989.

  • 15. Pielichowski, K, Hamerton, I. Compatible poly(vinyl chloride)/chlorinated polyurethane blends: thermal characteristics. Eur Polym J. 2000;36:171181. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 16. Filip, D, Macocinschi, D. Thermogravimetric analysis of polyurethane–polysulfone blends. Polym Int. 2002;51:699706. .

  • 17. Georgea, S, Varugheseb, KT, Thomas, S. Thermal and crystallisation behaviour of isotactic polypropylene/nitrile rubber blends. Polymer. 2000;41:54855503. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 18. Simoes, RD, Rodriguez-Perez, MA, Saja, JA, Constantino, CJL. Thermomechanical characterization of PVDF and P(VDF-TrFE) blends containing corn starch and natural rubber. J Therm Anal Calorim. 2010;99:621629. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19. Lopez, J, Rico, M, Montero, B, Diez, J, Ramirez, C. Polymer blends based on an epoxy-amine thermoset and a thermoplastic effect of thermoplastic on cure reaction and thermal stability of the system. J Therm Anal Calorim. 2009;95:369376. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 20. Komalan, C, George, KE, Varughese, KT, Mathew, VS, Thomas, S. Thermogravimetric and wide angle X-ray diffraction analysis of thermoplastic elastomers from nylon copolymer and EPDM rubber. Polym Degrad Stab. 2008;93:21042112. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 21. Jana, RN, Mukunda, PG, Nando, GB. Thermogravimetric analysis of compatibilized blends of low density polyethylene and poly(dimethyl siloxane) rubber. Polym Degrad Stab. 2003;80:7582. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 22. Yang, H, Lai, M, Liu, W, Sun, C, Liu, J. Morphology and thermal and mechanical properties of PBT/HIPS and PBT/HIPS-g-GMA blends. J Appl Polym Sci. 2002;85:26002608. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 23. John, B, Varughese, KT, Oommen, Z, Pötschke, P, Thomas, S. Dynamic mechanical behavior of highdensity polyethylene/ethylene vinyl acetate copolymer blends: the effects of the blend ratio, reactive compatibilization, and dynamic vulcanization. J Appl Polym Sci. 2003;87:20832099. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 24. Ramirez-Vargas, ER, Sandoval-Arellano, Z, Hernandez-Valdez, JS, Martinez-Colunga, JG, Sanchez-Valdes, S. Compatibility of HDPE/postconsumer HDPE blends using compatibilizing agents. J Appl Polym Sci. 2006;100:36963706. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 25. Diaz, MF, Barbosa, SE, Capiati, NJ. Addition compatibilization of PP/PS blends by tailor-made copolymers. Polym Eng Sci. 2006;46:329336. .

  • 26. Mirzazadeh, H, Katbab, AA. PP/EPDM-based thermoplastic dynamic vulcanizates with organoclay: morphology, mechanical and viscoelastic properties. Polym Adv Technol. 2006;17:975980. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 27. Yang, Y-L, Lin, Y, Sell, C, Hiver, J-M, Bai, S-L. Dynamic mechanical properties and morphology of high-density polyethylene/CaCO3 blends with and without an impact modifier. J Appl Polym Sci. 2007;103:39073914. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 28. Karger-Kocsis, J, Kiss, L. Dynamic mechanical properties and morphology of polypropylene block copolymers and polypropylene/elastomer blends. Polym Eng Sci. 1987;27:254262. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 29. Kumar, MSC, Alagar, M, Prabu, AA. Studies on dynamic mechanical and mechanical properties of vinyloxyaminosilane grafted ethylene propylene diene terpolymer/linear low density polyethylene (EPDM-g-VOS/LLDPE) blends. Eur Polym J. 2003;39:805816. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 30. Moly, KA, Bhagawan, SS, Groeninckx, G, Thomas, S. Correlation between the morphology and dynamic mechanical properties of ethylene vinyl acetate/linear low-density polyethylene blends: effects of the blend ratio and compatibilisation. J Appl Polym Sci. 2006;100:45264538. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 31. Borah JS , Chaki TK. Dynamic mechanical, thermal, physico-mechanical and morphological properties of LLDPE/EMA blends. J Polym Res. 2010. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 32. Borah JS , Chaki TK. Dynamic rheological, morphology and mechanical properties of compatibilized LLDPE/EMA blends. J Polym Res. 2010. .

  • 33. Catan, L, Albano, C, Karam, A, Perera, R, Silva, P. Thermal stability evaluation of PA6/LLDPE/SEBS-g-DEM blends. Macromol Symp. 2007;257:147157. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 34. Zong, R, Wang, Z, Liu, N, Hu, Y, Liao, G. Thermal degradation kinetics of polyethylene and silane-crosslinked polyethylene. J Appl Polym Sci. 2005;98:11721179. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 35. Srivastava, D, Kumar, P, Mathur, GN. Thermo-oxidative degradation studies of ternary blends of polyethylenes. Adv Polym Technol. 2004;23:5970. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 36. Corrales, T, Catalina, F, Peinado, C, Allen, NS, Fontan, E. Photooxidative and thermal degradation of polyethylenes: interrelationship by chemiluminescence, thermal gravimetric analysis and FTIR data. J Photochem Photobiol A Chem. 2002;147:213224. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 37. Hinsken, H, Moss, S, Pauquet, J, Zweifel, H. Degradation of polyolefines during melt processing. Polym Degrad Stab. 1991;34:279293. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 38. Poomalai, P, Ramaraj, B, Siddaramaiah. Thermal and mechanical properties of poly(methyl methacrylate) and ethylene vinyl acetate copolymer blends. J Appl Polym Sci. 2007;106:684691. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 39. Jager, KM, Dammert, RC, Sultan, BA. Thermal degradation studies of different polar polyethylene copolymers. J Appl Polym Sci. 2002;84:14651473. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 40. Gaoa, Z, Kanekob, T, Houc, D, Nakadab, M. Kinetics of thermal degradation of poly(methyl methacrylate) studied with the assistance of the fractional conversion at the maximum reaction rate. Polym Degrad Stab. 2004;84:399403. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 41. Doyle, CD. Estimating thermal stability of experimental polymers by empirical thermogravimetric analysis. Anal Chem. 1961;33:7779. .

  • 42. Wu, T, Li, Y, Zhang, DL, Liao, SQ, Tan, HM. Study on the morphology and properties of metallocene polyethylene and ethylene/vinyl acetate blends. J Appl Polym Sci. 2004;91:905910. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 43. Oommen, Z, Groninckx, G, Thomas, S. Dynamic mechanical and thermal properties of physically compatibilized natural rubber/poly(methyl methacrylate) blends by the addition of natural rubber-graft-poly(methyl methacrylate). J Polym Sci B Polym Phys. 2000;38:525536. .

    • Crossref
    • Search Google Scholar
    • Export Citation

Manuscript Submission: HERE

  • Impact Factor (2019): 2.731
  • Scimago Journal Rank (2019): 0.415
  • SJR Hirsch-Index (2019): 87
  • SJR Quartile Score (2019): Q3 Condensed Matter Physics
  • SJR Quartile Score (2019): Q3 Physical and Theoretical Chemistry
  • Impact Factor (2018): 2.471
  • Scimago Journal Rank (2018): 0.634
  • SJR Hirsch-Index (2018): 78
  • SJR Quartile Score (2018): Q2 Condensed Matter Physics
  • SJR Quartile Score (2018): Q2 Physical and Theoretical Chemistry

For subscription options, please visit the website of Springer.

Journal of Thermal Analysis and Calorimetry
Language English
Size A4
Year of
Foundation
1969
Volumes
per Year
4
Issues
per Year
24
Founder Akadémiai Kiadó
Founder's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Publisher Akadémiai Kiadó
Springer Nature Switzerland AG
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
CH-6330 Cham, Switzerland Gewerbestrasse 11.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 1388-6150 (Print)
ISSN 1588-2926 (Online)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Apr 2021 1 2 0
May 2021 4 0 0
Jun 2021 3 0 0
Jul 2021 1 0 0
Aug 2021 0 0 0
Sep 2021 2 0 0
Oct 2021 0 0 0