View More View Less
  • 1 Department of Chemistry, University of Helsinki, P.O. Box 55, 00014, Helsinki, Finland
  • 2 Materials Structure and Modeling Research Group of the Hungarian Academy of Sciences, Department of Inorganic and Analytical Chemistry, Budapest University of Technology and Economics, Szt. Gellért tér. 4, 1111, Budapest, Hungary
Restricted access

Abstract

This article demonstrates how important it is to find the optimal heating conditions when electrospun organic/inorganic composite fibers are annealed to get ceramic nanofibers in appropriate quality (crystal structure, composition, and morphology) and to avoid their disintegration. Polyvinylpyrrolidone [PVP, (C6H9NO)n] and ammonium metatungstate [AMT, (NH4)6[H2W12O40nH2O] nanofibers were prepared by electrospinning aqueous solutions of PVP and AMT. The as-spun fibers and their annealing were characterized by TG/DTA-MS, XRD, SEM, Raman, and FTIR measurements. The 400–600 nm thick and tens of micrometer long PVP/AMT fibers decomposed thermally in air in four steps, and pure monoclinic WO3 nanofibers formed between 500 and 600 °C. When a too high heating rate and heating temperature (10 °C min−1, 600 °C) were used, the WO3 nanofibers completely disintegrated. At lower heating rate but too high temperature (1 °C min−1, 600 °C), the fibers broke into rods. If the heating rate was adequate, but the annealing temperature was too low (1 °C min−1, 500 °C), the nanofiber morphology was excellent, but the sample was less crystalline. When the optimal heating rate and temperature (1 °C min−1, 550 °C) were applied, WO3 nanofibers with excellent morphology (250 nm thick and tens of micrometer long nanofibers, which consisted of 20–80 nm particles) and crystallinity (monoclinic WO3) were obtained. The FTIR and Raman measurements confirmed that with these heating parameters the organic matter was effectively removed from the nanofibers and monoclinic WO3 was present in a highly crystalline and ordered form.

  • 1. Yang, P, Yan, R, Fardy, M. Semiconductor nanowire: what’s next?. Nano Lett. 2010;10:15291536. .

  • 2. Li, JY, Dai, H, Li, Q, Zhong, XH, Ma, XF, Meng, J, Cao, XQ. Lanthanum zirconate nanofibers with high sintering-resistance. Mater Sci Eng B. 2006;133:209212. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 3. Ruda, HE, Polanyi, JC, Yang, JSY, Wu, Z, Philipose, U, Xu, T, Yang, S, Kavanagh, KL, Liu, JQ, Yang, L, Wang, Y, Robbie, K, Yang, J, Kaminska, K, Cooke, DG, Hegmann, FA, Budz, AJ, Haugen, HK. Developing 1D nanostructure arrays for future nanophotonics. Nanoscale Res Lett. 2006;1:99119. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 4. Choi, KJ, Jang, HW. One-dimensional oxide nanostructures as gas-sensing materials: review and issues. Sensors. 2010;10:40834099. .

  • 5. Mieszawska, AJ, Jalilian, R, Sumanasekera, GU, Zamborini, FP. The synthesis and fabrication of one-dimensional nanoscale heterojunctions. Small. 2007;3:722756. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 6. Morales, AM, Lieber, CM. A laser ablation method for the synthesis of crystalline semiconductor nanowires. Science. 1998;279:208211. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7. Ye, JF, Qi, LM. Solution-phase synthesis of one-dimensional semiconductor nanostructures. J Mater Sci Tech. 2008;24:529540. .

  • 8. Mozalev, A, Khatko, V, Bittencourt, C, Hassel, AW, Gorokh, G, Llobet, E, Correig, X. Nanostructured tungsten oxide semiconductor prepared by anodic and thermal processing of Al/W/Ti thin-film layers. Chem Mater. 2008;20:64826493. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 9. Kemell M , Härkönen E, Pore V, Ritala M, Leskelä M. Ta2O5- and TiO2-based nanostructures made by atomic layer deposition. Nanotechnology. 2010;21:035301, 8pp.

    • Search Google Scholar
    • Export Citation
  • 10. Zhang, Z, Shao, C, Gao, F, Li, X, Liu, Y. Enhanced ultraviolet emission from highly dispersed ZnO quantum dots embedded in poly(vinyl pyrrolidone) electrospun nanofibers. J Colloid Interface Sci. 2010;347:215220. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11. Sangmanee, M, Maensiri, S. Nanostructures and magnetic properties of cobalt ferrite (CoFe2O4) fabricated by electrospinning. Appl Phys A. 2009;97:167177. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 12. Nuansing, W, Ninmuang, S, Jarerboon, W, Maensiri, S, Seraphin, S. Magnesium ferrite (MgFe2O4) nanostructures fabricated by electrospinning. Mater Sci Eng B. 2006;131:147155. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13. Azad, AM, Matthews, T, Swary, J. Processing and characterization of electrospun Y2O3-stabilized ZrO2 (YSZ) and Gd2O3-doped CeO2 (GDC) nanofibers. Mater Sci Eng B. 2005;123:252258. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 14. Hou, Z, Li, C, Yang, J, Lian, H, Yang, P, Chai, R, Cheng, Z, Lin, J. One-dimensional CaWO4 and CaWO4:Tb3+ nanowires and nanotubes: electrospinning preparation and luminescent properties. J Mater Chem. 2009;19:27372746. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15. Piperno S , Passacantando M, Santucci S, Lozzi L, La Rosa S. WO3 nanofibers for gas sensing applications. J Appl Phys. 2007;101:124504, 4pp.

    • Search Google Scholar
    • Export Citation
  • 16. Shim, HS, Kim, JW, Sung, YE, Kim, WB. Electrochromic properties of tungsten oxide nanowires fabricated by electrospinning method. Sol Energy Mater Sol Cells. 2009;93:20622068. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 17. Wang, G, Ji, Y, Huang, Y, Yang, X, Gouma, PI, Dudley, M. Fabrication and characterization of polycrystalline WO3 nanofibers and their application for ammonia sensing. J Phys Chem B. 2006;110:2377723782. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 18. Ponhan, W, Maensiri, S. Fabrication and magnetic properties of electrospun copper ferrite (CuFe2O4) nanofibers. Solid State Sci. 2009;11:479484. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19. Qizheng, C, Xiangting, D, Jinxian, W, Mei, L. Direct fabrication of cerium oxide hollow nanofibers by electrospinning. J Rare Earths. 2008;26:664669. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 20. Maensiri, S, Nuansing, W, Klinkaewnarong, J, Laokul, P, Khemprasit, J. Nanofibers of barium strontium titanate (BST) by sol–gel processing and electrospinning. J Colloid Interface Sci. 2006;297:578583. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 21. Lu, X, Liu, X, Zhang, W, Wang, C, Wei, Y. Large-scale synthesis of tungsten oxide nanofibers by electrospinning. J Colloid Interface Sci. 2006;298:996999. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 22. NIST Chemistry Webbook Standard Reference Database, No 69, 01 June. 2005. http://webbooknistgov/chemistry.

  • 23. Maensiri, S, Laokul, P, Promarak, V. Synthesis and optical properties of nanocrystalline ZnO powders by a simple method using zinc acetate and poly(vinyl pyrrolidone). J Cryst Growth. 2006;289:102106. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 24. Zhenfeng, C, Huijan, R, Guixia, L, Guangyan, G. Synthesis and characterization of terbium–trimesic acid luminescent complex in polyvinylpyrrolidone matrix. J Rare Earths. 2006;24:724727. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 25. Li, T, Zhong, G, Fu, R, Yang, Y. Synthesis and characterization of Nafion/cross-linked PVP semi-interpenetrating polymer network membrane for direct methanol fuel cell. J Membr Sci. 2010;354:189197. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 26. Zhu, XF, Lu, P, Chen, W, Dong, J. Studies of UV crosslinked poly(N-vinylpyrrolidone) hydrogels by FTIR, Raman and solid-state NMR spectroscopies. Polymer. 2010;51:30543063. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 27. Fini, A, Cavallari, C, Ospitali, F. Effect of ultrasound on the compaction of pharmaceutics and biopharmaceutics. Eur J Pharm Biopharm. 2008;70:409420. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 28. Karavas, E, Georgarakis, M, Docoslis, A, Combining, BikiarisD, EM, S. TEM, and micro-Raman techniques to differentiate between the amorphous molecular level dispersions and nanodispersions of a poorly water-soluble drug within a polymer matrix. Int J Pharm. 2007;340:7683. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 29. Feldstein, MM. Adhesive hydrogels: structure, properties, and applications (a review). Polym Sci Ser A. 2004;46:11651191.

  • 30. Silva, MF, da Silva, CA, Fogo, FC, Pineda, EAG, Hechenleitner, AAW. Thermal and FTIR study of polyvinylpyrrolidone/lignin blends. J Therm Anal Calorim. 2005;79:367370. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 31. Lu, F, Liu, J, Xu, J. Synthesis of chain-like Ru nanoparticle arrays and its catalytic activity for hydrogenation of phenol in aqueous media. Mater Chem Phys. 2008;108:369374. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 32. Azhari, SJ, Diab, MA. Thermal degradation and stability of poly(4-vinylpyridine) homopolymer and copolymers of 4-vinylpyridine with methyl acrylate. Polym Degrad Stabil. 1998;60:253256. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 33. Mendes, LC, Rodrigues, RC, Silva, EP. Thermal, structural and morphological assessment of PVP/HA composites. J Them Anal Calorim. 2010;101:899905. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 34. Jablonski, AE, Lang, AJ, Vyazovkin, S. Isoconversional kinetics of degradation of polyvinylpyrrolidone used as a matrix for ammonium nitrate stabilization. Thermochim Acta. 2008;474:7880. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 35. Sionkowska, A, Kozlowska, J, Planecka, A, Skkopinska-Wisniewska, J. Photochemical stability of poly(vinyl pyrrolidone) in the presence of collagen. J Polym Degrad Stabil. 2008;93:21272132. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 36. Aggour, YA. Copolymerization and characterization of ethylene glycol allenyl methyl ether with N-vinyl pyrrolidone. J Macromol Sci A. 1998;35:14031413. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 37. Liu, C, Xiao, C, Liang, H. Properties and structure of PVP–lignin “blend films”. J Appl Polym Sci. 2005;95:14051411. .

  • 38. Lamastra, FR, Nanni, F, Camilli, L, Matassa, R, Carbone, M, Gusmano, G. Morphology and structure of electrospun CoFe2O4/multi-wall carbon nanotubes composite nanofibers. Chem Eng J. 2010;162:430435. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 39. Feng, W, Tao, H, Liu, Y, Liu, Y. tructure and optical behavior of nanocomposite hybrid films of well monodispersed ZnO nanoparticles into poly (vinylpyrrolidone). J Mater Sci Technol. 2006;22:230234. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 40. Sivaiah, K, Rudremadevi, BH, Bubbhudu, S, Kumar, GB, Varadarajulu, A. Structural, thermal and optical properties of Cu2+ and Co2+: PVP polymer films. Ind J Pure Appl Phys. 2010;48:658662.

    • Search Google Scholar
    • Export Citation
  • 41. Jing, C, Hou, J, Zhang, Y, Xu, X. Preparation of thick, crack-free germanosilicate glass films by polyvinylpyrrolidone and study of the UV-bleachable absorption band. J Non Cryst Solids. 2007;353:41284136. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 42. Jing, C, Xu, X, Hou, J. Preparation of compact Al2O3 film on metal for oxidation resistance by polyvinylpyrrolidone. J Sol Gel Sci Technol. 2007;43:321327. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 43. Du, YK, Yang, P, Mou, ZG, Hua, NP, Jiang, L. Thermal decomposition behaviors of PVP coated on platinum nanoparticles. J Appl Polym Sci. 2006;99:2326. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 44. Zhang, Z, Li, X, Wang, C, Wei, L, Liu, Y, Shao, C. ZnO hollow nanofibers: fabrication from facile single capillary electrospinning and applications in gas sensors. J Phys Chem C. 2009;113:1939719403. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 45. Bogatyrev, VM, Borisenko, NV, Pokrovskii, VA. Thermal degradation of polyvinylpyrrolidone on the surface of pyrogenic silica. Russ J Appl Chem. 2001;74:839844. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 46. Mansour, SAA, Mohamed, MA. Thermal decomposition and the creation of reactive solid surfaces. V. The genesis course of the WO3 catalyst from its ammonium paratungstate precursor. Thermochim Acta. 1988;129:187196. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 47. French, GJ, Sale, FR. A re-investigation of the thermal decomposition of ammonium paratungstate. J Mater Sci. 1981;16:34273436. .

  • 48. Fait, MJG, Lunk, HJ, Feist, M, Schneider, M, Dann, JN, Frisk, TA. Thermal decomposition of ammonium paratungstate tetrahydrate under non-reducing conditions. Characterization by thermal analysis, X-ray diffraction and spectroscopic methods. Thermochim Acta. 2008;469:1222. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 49. Lassner, E, Schubert, WD. Tungsten properties, chemistry, technology of the element, alloys, and chemical compounds. New York: Kluwer Academic/Plenum Publishers; 1999.

    • Search Google Scholar
    • Export Citation
  • 50. van Put, JW. Crystallisation and processing of ammonium paratunsgate (APT). Int J Refract Met Hard Mater. 1995;13:6176. .

  • 51. Szilágyi, IM, Madarász, J, Hange, F, Pokol, G. On-line evolved gas analyses (EGA by TG-FTIR and TG/DTA-MS) and solid state (FTIR, XRD) studies on thermal decomposition and partial reduction of ammonium paratungstate tetrahydrate. Solid State Ion. 2004;172:583586. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 52. Madarász, J, Szilágyi, IM, Hange, F, Pokol, G. Comparative evolved gas analyses (TG-FTIR, TG/DTA-MS) and solid state (FTIR, XRD) studies on thermal decomposition of ammonium paratungstate tetrahydrate (APT) in air. J Anal Appl Pyrol. 2004;72:197201. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 53. Szilágyi, IM, Madarász, J, Hange, F, Pokol, G. Partial thermal reduction of ammonium paratungstate tetrahydrate. J Therm Anal Calorim. 2007;88:139144. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 54. Szilágyi, IM, Hange, F, Madarász, J, Pokol, G. In situ HT-XRD study on the formation of hexagonal ammonium tungsten bronze by partial reduction of ammonium paratungstate tetrahydrate. Eur J Inorg Chem. 2006;17:34133418. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 55. Peters F , Gmelin L, Meyer RJ. Gmelins Handbuch der Anorganischen Chemie. Stickstoff, System Nummer 4. Berlin: Verlag Chemie GmbH; 1936. pp. 645683.

    • Search Google Scholar
    • Export Citation
  • 56. Szilágyi, IM, Madarász, J, Király, P, Tárkányi, G, Tóth, AL, Szabó, A, Varga-Josepovits, K, Pokol, G. Stability and controlled composition of hexagonal WO3. Chem Mater. 2008;20:41164125. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 57. Szilágyi, IM, Sakó, I, Király, P, Tárkányi, G, Tóth, AL, Szabó, A, Varga-Josepovits, K, Madarász, J, Pokol, G. Phase transformations of ammonium tungsten bronzes. J Therm Anal Calorim. 2009;98:707716. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 58. ICDD (International Centre for Diffraction Data) Powder Diffraction File, Release 2008.

  • 59. Zhang, HY, Xu, L, Wang, EB, Jiang, M, Wu, AG, Li, Z. Photochromic behavior and luminescent properties of novel hybrid organic–inorganic film doped with Preyssler’s heteropoly acid H12[EuP5W30O110] and polyvinylpyrrolidone. Mater Lett. 2003;57:14171422. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 60. Li, Y, Li, YG, Zhang, ZM, Wu, Q, Wang, EB. A new polyoxotungstate-based W72V30 spherical cage. Inorg Chem Commun. 2009;12:864867. .

  • 61. Duplyakin, VK, Baklanova, ON, Chirkova, OA, Antonicheva, NV, Arbuzov, AB, Voitenko, NN, Drozdov, VA, Likholobov, VA. Interaction of nickel hydroxocarbonate, ammonium paramolybdate, and ammonium metatungstate under mechanical activation. Kinet Catal. 2010;51:126130. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 62. Sunita, G, Devassy, BM, Vinu, A, Sawant, DP, Balasubramanian, VV, Halligudi, SB. Synthesis of biodiesel over zirconia-supported isopoly and heteropoly tungstate catalysts. Catal Commun. 2008;9:696702. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 63. Sarish, S, Devassy, BM, Böhringer, W, Feltcher, J, Halligudi, SB. Liquid-phase alkylation of phenol with long-chain olefins over WOx/ZrO2 solid acid catalysts. J Mol Catal A. 2005;240:123131.

    • Search Google Scholar
    • Export Citation
  • 64. Shijun, L, Qiyuan, C, Oingmin, Z, Songqin, L. Raman spectral study on isopolytungstates in aqueous solution. Trans Nonferr Met Soc China. 1998;8:688692.

    • Search Google Scholar
    • Export Citation
  • 65. Bukoski, RD, Shearin, S, Jackson, WF, Pamarthi, MF. Inhibition of Ca2+-induced relaxation by oxidized tungsten wires and paratungstate. J Pharmacol Exp Ther. 2001;299:343350.

    • Search Google Scholar
    • Export Citation
  • 66. Weiner, H, Lunk, HJ, Friese, R, Hartl, H. Synthesis, crystal structure, and solution stability of Keggin-type heteropolytungstates (NH4)6Ni 0.5 II[α-FeIIIO4W11O30NiIIO5(OH2)]·nH2O, (NH4)7Zn0.5[α-ZnO4W11O30ZnO5(OH2)]·nH2O, and (NH4)7Ni 0.5 II[α-ZnO4W11O30NiIIO5(OH2)]·nH2O (n≈18). Inorg Chem. 2005;44:77517761. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 67. Scheithauer, M, Graselli, RK, Knözinger, H. Genesis and structure of WOx/ZrO2 solid acid catalysts. Langmuir. 1998;14:30193029. .

  • 68. Faria, DLA, Gil, HAC, de Queiróz, AAA. The interaction between polyvinylpyrrolidone and I2 as probed by Raman spectroscopy. J Mol Struct. 1999;479:9398. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 69. Daniel, MF, Desbat, B, Lassegues, JC, Gerand, B, Figlarz, M. Infrared and Raman study of WO3 tungsten trioxides, and WO3 xH2O tungsten trioxide hydrates. J Solid State Chem. 1987;67:235247. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 70. Santato, C, Odziemkowski, M, Ulmann, M, Augustynski, J. Crystallographically oriented mesoporous WO3 films: synthesis, characterization, and applications. J Am Chem Soc. 2001;123:1063910649. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 71. Ramana, CV, Utsunomiya, S, Ewing, RC, Julien, CM, Becker, U. Structural stability and phase transitions in WO3 thin films. J Phys Chem B. 2006;110:1043010435. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 72. Siciliano, T, Tepore, A, Micocci, G, Serra, A, Manno, D, Filippo, E. WO3 gas sensors prepared by thermal oxidization of tungsten. Sens Actuator B. 2008;133:321326. .

    • Crossref
    • Search Google Scholar
    • Export Citation