View More View Less
  • 1 Department of Materials Science, Tallinn University of Technology, Ehitajate tee 5, Tallinn 19086, Estonia
  • 2 Institute of Structural Chemistry, Chemical Research Center, Hungarian Academy of Sciences, POB 17, Budapest 1525, Hungary
  • 3 Department of Inorganic and Analytical Chemistry, Budapest University of Technology and Economics, Szt. Gellért tér 4, Budapest 1521, Hungary
Restricted access

Abstract

The indium complex, mer-trichlorotris(thiourea)-indium(III) (In(tu)3Cl3, 1), crystallized from aqueous solution of InCl3 and SC(NH2)2 (tu) with molar ratio of 1:3, is a single-source precursor for In2S3 films by chemical spray pyrolysis. The structural model of the triclinic crystal 1 (space group P-1 with a = 8.4842(2) Å, b = 10.5174(2) Å, c = 13.1767(2) Å, α = 111.1870(10)°, β = 98.0870(10)°, γ = 97.889(2)°) has been improved by single crystal X-ray diffraction analysis through successful separation of the disordered positions of the asymmetric complex molecule situated on the inversion centre into two spatial arrangements. Thermal decomposition of 1 occurs with very similar mass loss courses till 400 °C in both nitrogen and air, anyhow the DTA curve indicates a gas-phase oxidation with an additional exothermic heat effect at 255 °C in air. Partial or more advanced oxidation of the initially evolved CS2 has taken place in both atmospheres, as its oxidation products, SO2, COS, CO2 are accompanied by the release of NH3, HCl in temperature range of 205–275 °C, while H2NCN and HCN evolve in air. In the third mass loss step, in the temperature interval of 405–750 °C in nitrogen and 405–700 °C in air, two processes, evaporation and oxidation of the solid residues are competing with each other, resulting in final decomposition product of 1 in air In2O3, while also some In2O3 in inert atmosphere beyond the main phase of In2S3 where, in addition considerable extent of loss of indium occurs, probably through volatile dimeric indium chloride species, which could not be detected either by EGA-MS or EGA-FTIR systems of ours. Nevertheless, evolution of HNCS is confirmed by EGA-FTIR, and release of CO2, H2NCN, SO2, and a little HCl is detected at temperatures above 450 °C in both atmospheres.

  • 1. Krunks, M, Kärber, E, Katerski, A, Otto, K, Oja Acik, I, Dedova, T, Mere, A. Extremely thin absorber layer solar cells on zinc oxide nanorods by chemical spray. Sol Energy Mater Sol Cells. 2010;94:11911195. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 2. Buecheler, S, Corica, D, Guettler, D, Chirila, A, Verma, R, Müller, U, Niesen, TP, Palm, J, Tiwari, AN. Ultrasonically sprayed indium sulfide buffer layers for Cu(In, Ga)(S, Se)2 thin-film solar cells. Thin Solid Films. 2009;517:23122315. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 3. Kim, W-T, Kim, C-D. Optical energy gaps of β-In2S3 thin films grown by spray pyrolysis. J Appl Phys. 1986;60:26312633. .

  • 4. John, TT, Bini, S, Kashiwaba, Y, Abe, T, Yasuhiro, Y, Sudha Kartha, C, Vijayakumar, KP. Characterization of spray pyrolysed indium sulfide thin films. Semicond Sci Technol. 2003;18:491500. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 5. Otto, K, Katerski, A, Mere, A, Volobujeva, O, Krunks, M. Spray pyrolysis deposition of indium sulfide thin films. Thin Solid Films. 2011;519:30553060. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 6. Otto K , Oja Acik I, Tõnsuaadu K, Mere A, Krunks M. Thermoanalytical study of precursors for In2S3 thin films deposited by spray pyrolysis. J Therm Anal Calorim. 2011. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7. Malyarik, MA, Ilyukhina, AB, Petrosyants, SD, Buslaev, YuA. Geometric isomers in indium(III) halo complexes: preparation and crystal structure of trichlorotris(thiourea)indium. Zh Neorg Khim Russ (Russ J Inorg Chem). 1992;37:15041508.

    • Search Google Scholar
    • Export Citation
  • 8. Sheldrick, GM. A short history of SHELX. Acta Crystallogr. 2008;A64:112122.

  • 9. NIST Chemistry WebBook Standard Reference Database No 69, June 2005 Release. http://webbook.nist.gov/chemistry.

  • 10. Spek, AL. Structure validation in chemical crystallography. Acta Crystallogr. 2009;D65:148155.

  • 11. International Centre for Diffraction Data (ICDD). Powder Diffraction File (PDF). PDF-2 Release 2009.

  • 12. Krunks, M, Madarász, J, Leskelä, T, Mere, A, Niinistö, L, Pokol, G. Study of zinc thiocarbamide chloride, a single-source precursor for zinc sulfide thin films by spray pyrolysis. J Therm Anal Calorim. 2003;72:497506. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13. Madarász, J, Bombicz, P, Okuya, M, Kaneko, S. Thermal decomposition of thiourea complexes of Cu(I), Zn(II), and Sn(II) chlorides as precursors for the spray pyrolysis deposition of sulfide thin films. Solid State Ion. 2001;141–142:439446. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 14. Brunetti, B, Piacente, V, Scardala, P. A torsion study on the sublimation process of InCl3. J Chem Eng Data. 1998;43:101104. .

  • 15. Krunks, M, Madarász, J, Hiltunen, L, Mannonen, R, Mellikov, E, Niinistö, L. Structure and thermal behaviour of dichlorobis(thiourea)cadmium(II), a single-source precursor for CdS thin films. Acta Chem Scand. 1997;51:294301. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 16. Madarász, J, Krunks, M, Niinistö, L, Pokol, G. Evolved gas analysis of dichlorobis(thiourea)zinc(II) by coupled TG-FTIR and TG/DTA-MS techniques. J Therm Anal Calorim. 2004;78:679686. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 17. Madarász, J, Pokol, G. Comparative evolved gas analysis on thermal degradation of thiourea by coupled TG-FTIR and TG/DTA-MS instruments. J Therm Anal Calorim. 2007;88:329336. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 18. Wang, S, Gao, Q, Wang, J. Thermodynamic analysis of decomposition of thiourea and thiourea oxides. J Phys Chem B. 2005;109:1728117289. .

  • 19. Madarász, J, Bombicz, P, Okuya, M, Kaneko, S, Pokol, G. Comparative online coupled TG-FTIR and TG/DTA-MS analyses of the evolved gases from thiourea complexes of SnCl2 tetrachloropenta(thiourea) ditin(II), a compound rich in thiourea. J Anal Appl Pyrolysis. 2004;72:209214. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 20. Krunks, M, Leskelä, T, Mannonen, R, Niinistö, L. Thermal decomposition of copper(I) thiocarbamide chloride hemihydrate. J Therm Anal Calorim. 1998;53:355364. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 21. Krunks, M, Leskelä, T, Mutikainen, I, Niinistö, L. A thermoanalytical study of copper(I) thiocarbamide compounds. J Therm Anal Calorim. 1999;56:479484. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 22. Onishi, A, Thomas, PS, Stuart, BH, Guerbois, JP, Forbes, SL. TG-MS analysis of the thermal decomposition of pig bone for forensic applications. J Therm Anal Calorim. 2008;1:8790. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 23. Porter, AEA, Sammes, PG. Comprehensive organic chemistry. 4 Oxford: Pergamon Press; 1979.

  • 24. Defoort, F, Chatillon, C, Bernard, C. Mass-spectrometric study of (indium+chlorine)(g) enthalpies of formation of InCl(g), In2Cl2(g), In2Cl4(g), InCl3(g), and In2Cl6 (g). J Chem Thermodyn. 1988;20:14431456. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 25. Ferro, D, Piacente, V, Scardala, P. Sublimation behavior of indium trisulfide studied by a simultaneous torsion and Knudsen technique. J Mater Sci Lett. 1988;7:13011304. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 26. Fadeev, VN, Fedorov, PI. Vapor pressure in the In-InCl3 system. Zh Neorg Khim. 1964;9:378380.

  • 27. Sawada Y , Aoyama T, Seki S, Arii T, Senda T, Ozao R. Thermal analyses of transparent conducting films, part 2: oxide formation from indium chloride. In: Proceedings of the NATAS annual conference on thermal analysis and applications, Albuquerque, NM, vol 3, Sept 22–24, 2003, pp 158/1–158/6.

    • Search Google Scholar
    • Export Citation