View More View Less
  • 1 São Paulo State University—UNESP, IQ/CAr, Rua Francisco Degni, s/n, Araraquara, SP, Brazil
Restricted access

Abstract

The organic fraction of urban solid residues disposed of in sanitary landfills during the decomposition yields biogas and leachate, which are sources of pollution. Leachate is a resultant liquid from the decomposition of substances contained in solid residues and it contains in its composition organic and inorganic substances. Literature shows an increase in the use of thermoanalytical techniques to study the samples with environmental interest, this way thermogravimetry is used in this research. Thermogravimetric studies (TG curves) carried out on leachate and residues shows similarities in the thermal behavior, although presenting complex composition. Residue samples were collected from landfills, composting plants, sewage treatment stations, leachate, which after treatment, were submitted for thermal analysis. Kinetic parameters were determined using the Flynn–Wall–Ozawa method. In this case they show little divergence between the kinetic parameter that can be attributed to different decomposition reaction and presence of organic compounds in different phases of the decomposition with structures modified during degradation process and also due to experimental conditions of analysis.

  • 1. Companhia de tecnologia de saneamento ambiental. Inventário estadual de resíduos sólidos do estado de São Paulo. 2009. http://www.cetesb.sp.gov.br. Accessed 21 July 2010.

    • Search Google Scholar
    • Export Citation
  • 2. Lima JD . Gestão de resíduos Sólidos no Brasil. Campina Grande: Inspira Comunicação e Design; 2003.

  • 3. Slack, RJ, Gronow, JR, Voulvoulis, N. Household hazardous waste in municipal landfills: contaminants in leachate. Sci Total Environ. 2005;337:119137. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 4. Yyazawa, M, Pavan, MA, Oliveira, EL, Yonashiro, M, Silva, AK. Gravimetric determination of soil organic matter. Braz Arch Biol Tech. 2000;43:475478. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 5. Pietro, M, Paola, C. Thermal analysis for the evaluation of the organic matter evolution during municipal solid waste aerobic composting process. Thermochim Acta. 2004;413:209214. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 6. Biosssolidos na agricultura. 2nd ed. São Paulo: Associação Brasileira de Engenharia Sanitária e Ambiental—ABES. 2002.

  • 7. Kiehl JE . Manual de compostagem: maturação e qualidade do composto. Piracicaba: Editado pelo autor; 2002.

  • 8. Dell’abate, MT. Thermal methods of organic matter maturation monitoring during a composting process. J Therm Anal Calorim. 2000;61:389396. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 9. Instituto brasileiro de geografia e estatística. Pesquisa Nacional de Saneamento. 2008. http://www.ibge.gov.br/home/presidencia. Accessed 21 June 2010.

  • 10. Companhia de tecnologia de saneamento ambiental. http://pt.wikipedia.org/wiki/Companhia_de_Saneamento_B%C3%A1sico_do_Estado_de_S%C3%A3o_Paulo. Accessed 29 July 2010.

    • Search Google Scholar
    • Export Citation
  • 11. Rocha, JC, Rosa, AH. Substâncias húmicas aquáticas: interação com espécies metálicas. São Paulo: UNESP; 2003.

  • 12. Flynn, JH, Wall, L. General treatment of the thermogravimetry of polymer. Polym Lett. 1966;70A:487523.

  • 13. Ozawa, T. Non-isothermal kinetics and generalized time. Thermochim Acta. 1986;100:109118. .

  • 14. Vyazovkin, S. Model-free kinetics. Staying free of multiplying entities without necessity. J Therm Anal Calorim. 2000;83:4551. .

  • 15. Liu, N, Zong, R, Shu, L, Zhou, J, FAN, W. Kinetic compensation effect in thermal decomposition of cellulosic materials in air atmosphere. J Appl Polym Sci. 2003;89:135141. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 16. Silva, AR, Crespi, MS, Ribeiro, CA, Oliveira, SC, Silva, MRS. Kinetic of thermal decomposition of residues from different kinds of composting. J Therm Anal Calorim. 2004;75:401409. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 17. Carlos, São. In: WIKIPÉDIA: enciclopédia livre. http://pt.wikipedia.org/wiki/Categoria:S%C3%A3o_Carlos. Accessed 13 August 2010.

    • Search Google Scholar
    • Export Citation
  • 18. Associação Brasileira de Normas Técnicas. NBR 10.004-resíduos sólidos: classificação. ABNT: Rio de Janeiro; 2004.

  • 19. Associação Brasileira de Normas Técnicas. NBR 10.007-amostragem de resíduos sólidos. ABNT: Rio de Janeiro; 2004.

  • 20. Garcia, AN, Marcila, A, Font, R. Termogravimetric kinetic study of the pyrolysis of municipal solid waste. Thermochim Acta. 1995;254:277304. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 21. Crespi, MS, Silva, AR, Ribeiro, CA, Oliveira, SC, Santiago-Silva, MRS. Composting of urban solid residues (USR) by different disposition kinetic of thermal decomposition. J Therm Anal Calorim. 2003;72:10491056. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 22. Oliveira, LC, Ribeiro, CA, Rosa, AH, Botero, WG, Rocha, JC, Romão L, PC, Santos, A. Thermal decomposition kinetics of humic substance extracted from mi-Rio Negro (Amazon basin) soil sample. J Braz Chem Soc. 2009;20:10031010.

    • Search Google Scholar
    • Export Citation
  • 23. Almeida, S, Lima, EM, Crespi, MS, Ribeiro, CA, Salch, V. Kinetic studies of urban solid residues and leachate from sanitary landfill. J Therm Anal Calorim. 2009;97:529533. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 24. Lima, EN, Crespi, MS, Ribeiro, CA, Almeida, S. Non-isothermal kinetic for lyophilized leachate from sanitary landfill and composting usine. J Therm Anal Calorim. 2007;90:823826. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 25. Capana, AS. Caracterização e estudo do comportamento térmico de resíduo (lodo) proveniente de estação de tratamento de água e esgoto no município de Araraquara (Mestrado em Química). Araraquara: Instituto de Química, UNESP; 2009.

    • Search Google Scholar
    • Export Citation

Manuscript Submission: HERE

  • Impact Factor (2019): 2.731
  • Scimago Journal Rank (2019): 0.415
  • SJR Hirsch-Index (2019): 87
  • SJR Quartile Score (2019): Q3 Condensed Matter Physics
  • SJR Quartile Score (2019): Q3 Physical and Theoretical Chemistry
  • Impact Factor (2018): 2.471
  • Scimago Journal Rank (2018): 0.634
  • SJR Hirsch-Index (2018): 78
  • SJR Quartile Score (2018): Q2 Condensed Matter Physics
  • SJR Quartile Score (2018): Q2 Physical and Theoretical Chemistry

For subscription options, please visit the website of Springer.

Journal of Thermal Analysis and Calorimetry
Language English
Size A4
Year of
Foundation
1969
Volumes
per Year
4
Issues
per Year
24
Founder Akadémiai Kiadó
Founder's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Publisher Akadémiai Kiadó
Springer Nature Switzerland AG
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
CH-6330 Cham, Switzerland Gewerbestrasse 11.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 1388-6150 (Print)
ISSN 1588-2926 (Online)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Feb 2021 0 0 0
Mar 2021 0 0 0
Apr 2021 0 0 0
May 2021 0 0 0
Jun 2021 0 0 0
Jul 2021 1 0 0
Aug 2021 0 0 0