View More View Less
  • 1 Institute of Geology and Mineralogy SB RAS, Pr. Ac. Koptyuga 3, 630090, Novosibirsk, Russia
  • | 2 Institute of Inorganic Chemistry SB RAS, Pr. Ac. Lavrentieva 3, 630090, Novosibirsk, Russia
  • | 3 Novosibirsk State University, Ul. Pirogova 2, 630090, Novosibirsk, Russia
Restricted access

Abstract

Electrical analog modeling is the conventional way for the discussion of how thermoanalytical devices work. This tradition goes back to the 50–60s of the twentieth century, when the electric circuits worked with analog signal, and RC circuits were the advanced tool for the calculation of integrals and derivatives. Today the electric circuits work with digital signal, and the computation is performed with microchips and computers. Electrical analog modeling failed to explain how DSC calibration coefficient changes with temperature. This problem was solved by means of direct thermophysical consideration. The temperature of maximum sensitivity for three DSCs is shown to obey the equation for the calibration coefficient.

  • 1. Rodríguez de Rivera, M, Socorro, F, Matos, JS 2010 Modeling of the thermal effects involved in the determination of heat of mixing, using an ITC operating in continuous mode. J Therm Anal Calorim. 99:791797 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 2. Khane, V, Usman, S 2010 Further on integrator circuit analogy for natural convection. Nucl Eng Des. 240:609615 .

  • 3. Couto, SM 2002 Modeling grain drying as discharge of an RC electrical circuit. Trans ASAE. 45:14451454.

  • 4. Mudd, C 1999 Evaluation of phase transition errors in heat capacity calorimeters using SPICE simulated RC models. J Biochem Biophys Meth. 39:738 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 5. Nam, S-K, Kim, J-K, Cho, S-C, Lee, S-K 2010 Design and characterization of a high resolution microfluidic heat flux sensor with thermal modulation. Sensors. 10:65946611 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 6. Swietoslawski, W 1946 Microcalorimetry Reinhold Pub. Corp. New York.

  • 7. Calvet, E, Prat, H 1956 Microcalorimétrie: Applications Physico-chimiques et Bioloques Masson ETCie Paris.

  • 8. Hemminger, W, Höhne, G 1984 Calorimetry. Fundamentals and practice Verlag Chemie GmbH Weinheim.

  • 9. Šestác, J 1984 Thermophysical properties of solids: their measurements and theoretical thermal analysis Academia Prague.

  • 10. Zielenkiewicz, W 2005 Calorimetry Institute of Physical Chemistry of the Polish Academy of Sciences Warszawa.

  • 11. Wendlandt, WW 1974 Thermal methods of analysis Wiley-Interscience New York 505.

  • 12. Dosch, EL 1970 An electrical technique for characterization of response parameters of DTA sample holders. Thermochim Acta. 1:367371 .

  • 13. Bush, V 1934 Structural analysis by electric circuit analogies. J Franklin Inst. 217:289329 .

  • 14. Gutenmakher, LI 1949 Electrical models USSR Academy of Sciences Moscow (in Russian).

  • 15. Liebman, G 1956 A new electrical analog method for the solution of transient heat conduction problems. Trans ASME. 78:655665.

  • 16. Tetelbaum, IM 1963 Elektrische Analogierechenverfahren Verlag Technik Berlin.

  • 17. Gusenkov, GN, Krestov, GA 1978 Problems of non-linear theory in differential scanning calorimetry. J Therm Anal. 13:369386 .

  • 18. Seybold, K, Meisel, T, Cserfalvi, T 1979 Modeling of quantitative DTA equipment I. Electric analog approach. J Therm Anal. 15:93100 .

  • 19. Sarge, SM, Gmelin, E, Höhne, GWH, Cammenga, HK, Hemminger, W, Eysel, W 1994 The caloric calibration of scanning calorimeters. Thermochim Acta. 247:129168 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 20. Sarge, SM, Höhne, GWH, Cammenga, HK, Eysel, W, Gmelin, E 2000 Temperature, heat and heat flow calibration of scanning calorimeters in the cooling mode. Thermochim Acta. 361:120 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 21. Drebushchak, VA 2004 Calibration coefficient of a heat-flow DSC—part 1. Relation to the sensitivity of a thermocouple. J Therm Anal Calorim. 76:941947 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 22. Drebushchak, VA 2005 Calibration coefficient of a heat-flow DSC—part 2. Optimal calibration procedure. J Therm Anal Calorim. 79:213218 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 23. Drebushchak, VA 2009 Approximation of the emf of a thermocouple. Part 1. The polynomials of temperature and Runge’s phenomenon. J Therm Anal Calorim. 96:315320 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 24. Marti, E, Kaisersberger, E, Emmerich, W-D 2004 New aspects of thermal analysis. Part I. Resolution of DSC and means for its optimization. J Therm Anal Calorim. 77:905934 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 25. Aubuchon SR . Recent developments in DSC technology. In: ESTAC-10. Abstract Book; 2010. p. 49.

  • 26. van Ekeren PJ , Hakvoort G, de Klerk WPC, Van den Mooter GRJ, Vanden Poel G, Pijpers MFJ, Witteveen AJ. Renewal of the TAWN test for measuring the resolution of DSCs. In: ESTAC—10 Program, Rotterdam; 2010.

    • Search Google Scholar
    • Export Citation
  • 27. Drebushchak, VA 2007 Calibration coefficient of a heat-flow DSC—part 3. Electromotive force of a thermocouple as a function of temperature. J Therm Anal Calorim. 90:289298 .

    • Crossref
    • Search Google Scholar
    • Export Citation

Manuscript Submission: HERE

  • Impact Factor (2019): 2.731
  • Scimago Journal Rank (2019): 0.415
  • SJR Hirsch-Index (2019): 87
  • SJR Quartile Score (2019): Q3 Condensed Matter Physics
  • SJR Quartile Score (2019): Q3 Physical and Theoretical Chemistry
  • Impact Factor (2018): 2.471
  • Scimago Journal Rank (2018): 0.634
  • SJR Hirsch-Index (2018): 78
  • SJR Quartile Score (2018): Q2 Condensed Matter Physics
  • SJR Quartile Score (2018): Q2 Physical and Theoretical Chemistry

For subscription options, please visit the website of Springer.

Journal of Thermal Analysis and Calorimetry
Language English
Size A4
Year of
Foundation
1969
Volumes
per Year
4
Issues
per Year
24
Founder Akadémiai Kiadó
Founder's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Publisher Akadémiai Kiadó
Springer Nature Switzerland AG
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
CH-6330 Cham, Switzerland Gewerbestrasse 11.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 1388-6150 (Print)
ISSN 1588-2926 (Online)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Jun 2021 0 0 0
Jul 2021 1 0 0
Aug 2021 1 0 0
Sep 2021 1 0 0
Oct 2021 0 0 0
Nov 2021 0 0 0
Dec 2021 0 0 0