The development of a new sample controlled thermal analysis technique based on a heat flux DSC is described. The performance of the system is demonstrated by studies on the decomposition of sodium bicarbonate and the oxidation of a copper impregnated carbon. The ability of the technique to study reactions which take place without a change in mass is illustrated by the curing of an epoxy resin with a polyaminoamide hardener.
1. OT S⊘rensen J Rouquerol eds. 2003 Sample Controlled Thermal Analysis Kluwer Academic Publishers Dordrecht.
2. Rouquerol J . Méthode d’analyse thermique sous faible pression et à vitesse de décomposition constante. Bull Soc Chim Fr. 1964; 31–32.
3. Erdey L , Paulik F, Paulik J, Hungarian Patent No. 152197, registered October 1962, published December 1965.
4. Paulik, J, Paulik, F 1971 Quasi-isothermal Thermogravimetry. Anal Chim Acta 56:328–331 .
5. Sorensen, OT 1982 Thermogravimetric studies of non-stoichimetric cerium oxides under isothermal and quasi-isothermal conditions. Thermochim Acta 13:429–437.
6. Smith, CS 1940 A simple method of thermal analysis permitting quantitative measurements of specific and latent heats. Trans AIME 137:236–245.
7. Saccone, A, Macchio, D, Robinson, JAJ, Hayes, FH, Ferro, R 2001 Smith thermal analysis of selected Pr–Mg alloys. Thermochim Acta 317–318:497–502.
8. Paulik, F, Bessenyey-Paulik, E, Walther-Paulik, K 1999 Transformation-governed heating techniques in thermal analysis II. J Therm Anal Calorim 58:725–739 .
9. Paulik, F, Bessenyey-Paulik, E, Walther-Paulik, K 2003 Differential thermal analysis under quasi-isothermal, quasi-isobaric conditions (Q-DTA). Examinations using “transformation-governed heating control” and “self-generated atmosphere” (TGHC-SGA). Thermochim Acta 402:105–116 .
10. Paulik, F, Bessenyey-Paulik, E, Walther-Paulik, K 2004 Differential thermal analysis under quasi-isothermal, quasi-isobaric conditions (Q-DTA). Part II. Water evaporation and the decomposition mechanism of compounds with structural and crystal water. Thermochim Acta 424:75–82 .
11. Paulik, F, Bessenyey-Paulik, E, Walther-Paulik, K 2005 Differential thermal analysis under quasi-isothermal, quasi-isobaric conditions (Q-DTA). Part III. Mechanism of congruent and incongruent phase transformations of salt hydrates. Thermochim Acta 430:59–65 .
12. Paulik, F, Bessenyey-Paulik, E, Walther-Paulik, K 2005 Differential thermal analysis under quasi-isothermal, quasi-isobaric conditions (Q-DTA). Part IV. Latent error in the determination of the decomposition heat of salt hydrates decomposing congruently and incongruently. Thermochim Acta 438:76–82 .
13. Barnes, PA, Parkes, GMB, Charsley, EL 1994 High performance evolved gas analysis system for catalyst characterization. Anal Chem 66:2226–2231 .
14. Dei, L, Guarini, GCT 1997 The thermal decomposition of NaHCO3. Renewed studies by DSC, SEM and FTIR. J Therm Anal 50:773–783 .
15. Criado, JM, Ortega, A, Gotor, F 1990 Correlation between the shape of controlled-rate thermal analysis curves and the kinetics of solid-state reactions. Thermochim Acta 157:171–179 .
16. Dawson, EA, Parkes, GMB, Barnes, PA, Chinn, MJ, Norman, PR 1999 A study of the activation of carbon using sample controlled thermal analysis. J Therm Anal Calorim 56:267–273 .