View More View Less
  • 1 Institute of Mechanics, Faculty of Aerospace Engineering, University of the Federal Armed Forces, Neubiberg, Germany
  • | 2 Institute of Mechanics and Thermodynamics, Faculty of Mechanical Engineering, Chemnitz University of Technology, Chemnitz, Germany
Restricted access

Abstract

The stabilization of osteoporotic vertebrae with acrylic bone cement, called vertebroplasty, is a common procedure in modern surgery. However, the thermomechanical-chemically coupled material behaviour of curing bone cements makes the application even for experienced surgeons difficult and can lead to potential complications like heat necrosis, leaking bone cement, embolisms and postoperative load shifting. In order to reduce these potential complications, to minimize the risks and to better understand the occurring effects, the thermophysical properties of a commercial acrylic bone cement were investigated in detail using differential scanning calorimetry, volumetric dilatometry and temperature controlled rheometry. More specifically, the reaction kinetics, the specific heat, the thermal conductivity, the thermal expansion, the chemical shrinkage as well as the mechanical behaviour was studied during the reaction process of the bone cement. Furthermore, the explored material behaviour is described by a customized material model that takes into account all observed effects. With the aid of this model the inhomogeneous chemical, thermal and mechanical states that appear during the application and curing of acrylic bone cements, can be studied by finite element treatment.

  • 1. Mazzullo, S, Paolini, M, Verdi, C. 1991 Numerical simulation of thermal bone necrosis during cementation of femoral prostheses. J Math Biol. 29:47594. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 2. Maffezzoli, A, Ronca, D, Guida, G, Pochini, I, Nicolais, L. 1997 In-situ polymerization behaviour of bone cements. J Mater Sci Mater Med. 8:7583. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 3. Lingois, P, Berglund, L, Maffezzoli, A. 2003 Chemically induced residual stresses in dental composites. J Mater Sci. 38:132131. .

  • 4. Briscoe, A, New, A. Polymerisation stress modelling in acrylic bone cement. J Biomech. 2010;43:97883. .

  • 5. Perez, MA, Nuno, N, Madrala, A, Garcia-Aznar, JM, Doblare, M. 2009 Computational modelling of bone cement polymerization: temperature and residual stresses. Comput Biol Med. 39:7519. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 6. Beaudoin, AJ, Mihalko, WM, Krause, WR. 1991 Finite element modelling of polymethylmethacrylate flow through cancellous bone. J Biomech. 24: 2 12736. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7. Baroud, G, Yahia, FB. 2004 A finite element rheological model for polymethylmethacrylate flow: analysis of the cement delivery in vertebroplasty. J Eng Med. 218:3318. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8. Baroud, G, Bohner, M, Heini, PF, Steffen, T. 2004 Injection of biomechanics of bone cements used in vertebroplasty. Biomed Mater Eng. 14:487504.

    • Search Google Scholar
    • Export Citation
  • 9. Baroud, G, Vant, C, Giannitsios, D, Bohner, M, Steffen, T. 2004 Effect of vertebral shell on injection pressure and intravertebral pressure in vertebroplasty. Spine. 30:6874.

    • Search Google Scholar
    • Export Citation
  • 10. Baroud, G, Crookshank, M, Bohner, M. 2004 High-viscosity cement significantly enhances uniformity of cement filling in vertebroplasty: an experimental model and study on cement leakage. Spine. 31:25628. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11. Srimongkol, S, Wiwatanapataphee, B, Wu, YH. 2005 Computer simulation of polymethylacrylate bone cement flow through femoral canal and cancellous bone. Aust New Zealand Ind Appl Math J. 47:C40418.

    • Search Google Scholar
    • Export Citation
  • 12. Choon Meng JT . Patient specific finite volume modeling for intraosseous PMMA cement flow simulation in vertebral cancellous bone. PhD thesis, National University of Singapore. 2007.

    • Search Google Scholar
    • Export Citation
  • 13. Baroud, G, Nemes, J, Heini, PF, Steffen, T. 2004 Load shift of the intervertebral disc after a vertebroplasty: a finite element study. Eur Spine J. 12:4216. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 14. Rohlmann, A, Zander, T, Jony, WU, Weber, U, Bergmann, G. 2005 Einfluss der Wirbelkrpersteifigkeit auf den intradiskalen druck. Biomed Tech. 50:14852. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15. Lion, A, Yagimli, B, Baroud, G, Görke, U. 2008 Constitutive modelling of PMMAbased bone cement: a functional model of viscoelasticity and its approximation for time domain investigations. Arch Mech. 60:22142.

    • Search Google Scholar
    • Export Citation
  • 16. Lion, A, Höfer, P. 2007 On the phenomenological representation of curing phenomena in continuum mechanics. Arch Mech. 59:5989.

  • 17. Drebushchak VA . From electrical analog to thermophysical modeling of DSC. J Therm Anal Calorim. 2010. .

  • 18. Schawe, JEK. 2002 A description of chemical and diffusion control in isothermal kinetics of cure kinetics. Thermochim Acta. 388:299312. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19. Blumenstock T . Analyse der Eigenspannungen während der Aushärtung von Epoxidharzmassen. PhD thesis, Universität Stuttgart. 2003.

    • Search Google Scholar
    • Export Citation
  • 20. Wenzel M . Spannungsbildung und Relaxationsverhalten bei der Aushärtung von Epoxidharzen. Technische Universität Darmstadt. 2005.

    • Search Google Scholar
    • Export Citation
  • 21. Kolmeder, S, Lion, A. 2010 On the thermomechanical-chemically coupled behavior of acrylic bone cements: experimental characterization of material behavior and modeling approach. Tech Mech. 30:195202.

    • Search Google Scholar
    • Export Citation
  • 22. O’Neill, MJ. 1966 Measurement of specific heat functions by differential scanning calorimetry. Anal Chem. 38:13316. .

  • 23. Van Assche, G, Van Hemelrijck, A, Rahier, H, Van Mele, B. Modulated differential scanning calorimetry: isothermal cure and vitrification of thermosetting systems. Thermochim. Acta. 1995;268:12142. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 24. Lion, A, Yagimli, B. 2008 Differential scanning calorimetry—continuum mechanical considerations with focus to the polymerisation of adhesives. Z Angew Math Mech. 88:388402. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 25. Shanks RA , Gunaratne LMWK. Comparison of reversible melting behaviour of poly(3-hydroxybutyrate) using quasi-isothermal and other modulated temperature differential scanning calorimetry techniques. J Therm Anal Calorim. 2011. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 26. Gracia-Fernández C , Tarró-Saavedra J, López-Beceiro J, Gómez-Barreiro S, Naya S, Artiaga R. Temperature modulation in PDSC for monitoring the curing under pressure. J Therm Anal Calorim. 2011. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 27. Sato, Y, Taira, T. 2006 The studies of thermal conductivity in GdVO4, YVO4, and Y3Al5O12 measured by quasi-onedimensional flash method. Opt Exp. 14:1052836. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 28. Moynihan, CT, Easteal, AJ, Wilder, J, Tucker, J. Dependence of the glass transition temperature on heating and cooling rate. J Phys Chem. 1974;78:26737. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 29. Risen, R, Schawe, JKE. Die Glasübergangstemperatur gemessen mit verschiedenen TA Techniken. Teil 1: Übersicht. UserCom. 2003;17:14.

    • Search Google Scholar
    • Export Citation
  • 30. Risen, R, Schawe, JKE. Die Glasübergangstemperatur gemessen mit verschiedenen TA Techniken, Teil 2: ermittlung der glasübergangstemperatur. UserCom. 2003;18:15.

    • Search Google Scholar
    • Export Citation
  • 31. Lion, A, Liebl, C, Kolmeder, S, Peters, J. 2010 Representation of the glass-transition in mechanical and thermal properties of glass-forming materials: a three-dimensional theory based on thermodynamics with internal state variables. J Mech Phys Solids. 58:133860. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 32. Barbés B , Páramo R, Sobrón F, Blanco E, Casanova C. Thermal conductivity measurement of liquids by means of a microcalorimeter. J Therm Anal Calorim. 2010. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 33. Tian F , Sun L, Mojumdar SC, Venart JES, Prasad RC. Absolute measurement of thermal conductivity of poly (acrylic acid) by transient hot wire technique. J Therm Anal Calorim. 2011. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 34. Maffezzoli, A, Terzi, R. Thermal analysis of visible light-activated dental composites. Thermochim Acta. 1995;269/270:31935. .

  • 35. Micelli, F, Maffezzoli, A. Characterization of the kinetic behavior of resin modified Glass-ionomer cements by DSC, TMA and ultrasonic wave propagation. J Mater Sci Mater Med. 2001;12:1516. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 36. Farrar, DF, Rose, J. 2001 Rheological properties of PMMA bone cements during curing. Biomater. 22:300513. .

  • 37. O’Brien, DJ, Mather, PT, White, SR. 2001 Viscoelastic properties of an epoxy resin during cure. J Compos Mater. 35:883904. .

  • 38. Collyer, AA, Clegg, DW. Rheological measurement. New York: Elsevier Applied Science; 1988.

  • 39. Kamal, MR, Sourour, S, Ryan, M. 1973 Kinetic and thermal characterization of thermoset cure. Polym Eng Sci. 13:5964. .

  • 40. Sourour, S, Kamal, MR. 1976 Differential scanning calorimetry of epoxy-amine cure: isothermal cure kinetics. Thermochim Acta. 14:4159. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 41. Kenny, JM, Maffezzoli, A, Nicolais, L. 1990 A Model for the thermal and chemorheological behavior of thermoset processing: (II) unsaturated polyester based composites. Compos Sci Technol. 38:33958. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 42. Maffezzoli, A. 1996 Polymerisation kinetics of acrylic bone cements by differential scanning calorimetry. J Therm Anal. 47:3549. .

  • 43. Fournier, J, Williams, G, Duch, C, Aldridge, GA. 1996 Changes in molecular dynamics during bulk polymerization of an epoxide-amine system as studied by dielectric relaxation spectroscopy. Macromol. 29:7079107. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 44. Haupt, P. Continuum mechanics and theory of materials, 2nd edn. Berlin: Springer; 2002.

  • 45. Holzapfel, GA. Nonlinear solid mechanics: a continuum approach for engineering. Chichester: Wiley; 2000.

  • 46. Böhme, G. Strömungsmechanik nichtnewtonscher Fluide, 2nd edn. Stuttgart: Teubner Verlag; 2000.

  • 47. Alberty, RA. 2001 Use of legendre transforms in chemical thermodynamics. Pure Appl Chem. 73: 8 134980. .

  • 48. Höfer P . Dynamische Eigenschaften technischer Gummiwerkstoffe: experimente, thermomechanische materialmodellierung und implementierung in die FEM. München: Verlag Dr. Hut; 2009.

    • Search Google Scholar
    • Export Citation
  • 49. Haupt, P, Lion, A. 2002 On finite linear viscoelasticity of incompressible isotropic materials. Acta Mech. 159:87124. .

  • 50. Lion, A, Kardelky, C. 2004 The payne effect in finite viscoelasticity: constitutive modelling based on fractional derivatives and intrinsic time scales. Int J Plast. 20:131345. .

    • Crossref
    • Search Google Scholar
    • Export Citation

Manuscript Submission: HERE

  • Impact Factor (2019): 2.731
  • Scimago Journal Rank (2019): 0.415
  • SJR Hirsch-Index (2019): 87
  • SJR Quartile Score (2019): Q3 Condensed Matter Physics
  • SJR Quartile Score (2019): Q3 Physical and Theoretical Chemistry
  • Impact Factor (2018): 2.471
  • Scimago Journal Rank (2018): 0.634
  • SJR Hirsch-Index (2018): 78
  • SJR Quartile Score (2018): Q2 Condensed Matter Physics
  • SJR Quartile Score (2018): Q2 Physical and Theoretical Chemistry

For subscription options, please visit the website of Springer.

Journal of Thermal Analysis and Calorimetry
Language English
Size A4
Year of
Foundation
1969
Volumes
per Year
4
Issues
per Year
24
Founder Akadémiai Kiadó
Founder's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Publisher Akadémiai Kiadó
Springer Nature Switzerland AG
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
CH-6330 Cham, Switzerland Gewerbestrasse 11.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 1388-6150 (Print)
ISSN 1588-2926 (Online)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
May 2021 1 0 0
Jun 2021 2 0 0
Jul 2021 2 0 0
Aug 2021 2 0 0
Sep 2021 4 0 0
Oct 2021 1 0 0
Nov 2021 0 0 0