View More View Less
  • 1 Faculty of Chemistry, University of Gdańsk, Sobieskiego 18, 80-952, Gdańsk, Poland
Restricted access

Abstract

Isothermal titration calorimetry (ITC) and potentiometric titration methods have been used to study the process of proton transfer in the copper(II) ion-glycylglycine reaction. The stoichiometry, conditional stability constants, and thermodynamic parameters (ΔG, ΔH, and ΔS) for the complexation reaction were determined using the ITC method. The measurements were carried out at 298.15 K in solutions with a pH of 6 and the ionic strength maintained with 100 mM NaClO4. Carrying out the measurements in buffer solutions of equal pH but different enthalpies of ionization of its components (Mes, Pipes, Cacodylate) enabled determination of the enthalpy of complex formation, independent of the enthalpy of buffer ionization. The number of protons released by glycylglycine on account of complexation of the copper(II) ions was determined from calorimetric and potentiometric measurements.

  • 1. Behbehani, GR, Mirzaie, M. A high performance method for thermodynamic study on the binding of copper ion and glycine with Alzheimer’s amyloid β peptide. J Thermal Anal Calorim. 2009;96:631635. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 2. Kozłowski, H, Bal, W, Dyba, M, Kowalik-Jankowska, T. Specific structure-stability relations in metallopeptides. Coord Chem Rev. 1999;184:319346. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 3. Weder, JE, Dillon, CT, Hambley, TW, Kennedy, BJ, Lay, PA, Biffin, JR, Regtop, HL, Davies, NM. Copper complexes of non-steroidal anti-inflammatory drugs: an opportunity yet to be realized. Coord Chem Rev. 2002;232:95126. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 4. Souaya, ER, Ismail, EH, Mohamed, AA, Milad, NE. Preparation, characterization and thermal studies of some transition metal ternary complexes. J Thermal Anal Calorim. 2009;95:253258. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 5. Khalil, MMH, Ismail, EH, Azim, SA, Souaya, ER. Synthesis, characterization and thermal analysis of ternary complexes of nitrilotriacetic acid and alanine or phenylalanine with some transition metals. J Thermal Anal Calorim. 2010;101:129135. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 6. Kharadi, GJ, Patel, KD. Synthesis, spectroscopic, thermal and biological aspect of mixed ligand copper(II) complexes. J Thermal Anal Calorim. 2009;96:10191028. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7. Scheinberg, H. Wilson’s disease and the physiological chemistry of copper. Inorganic chemistry in biology and medicine. ACS Symp Ser. 1980;140:373380. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8. Crisponi, G, Nurchi, VM, Fanni, D, Gerosa, C, Nemolato, S, Faa, G. Copper-related diseases: from chemistry to molecular pathology. Coord Chem Rev. 2010;254:876889. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 9. Laurie SH , Lund T, Raynor JB. Electronic absorption and electron spin resonance studies on the interaction between the biologically relevant copper(II) glycylglycine and l-histidine complexes with d-penicillamine. J Chem Soc Dalton Trans. 1975; 13891394.

    • Search Google Scholar
    • Export Citation
  • 10. Facchin, G, Kremer, E, Baran, EJ, Castellano, EE, Piro, OE, Ellena, J, Costa-Filho, AJ, Torre, MH. Structural characterization of a series of new Cu-dipeptide complexes in solid state and in solution. Polyhedron. 2006;25:25972604. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11. Facchin, G, Torre, MH, Kremer, E, Piro, OE, Castellano, EE, Baran, EJ. Synthesis and characterization of three new Cu(II)-dipeptide complexes. J Inorg Biochem. 2002;89:174180. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 12. Kistenmacher, TJ, Szalda, DJ. Glycylglycinatocopper(II) dihydrate. Acta Crystallogr. 1975;B31:16591662.

  • 13. Aiba, H, Yokoyama, A, Tanaka, H. Copper(II) complexes of l-histydylglycine and l-histydylglycylglicine in aqueous solution. Bull Chem Soc Jap. 1974;47:136142. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 14. Sigel, H, Martin, RB. Coordination properties of the amide bond. Stability and structure of metal ion complexes of peptide and related ligands. Chem Rev. 1982;82:385426. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15. Kim, MK, Martell, AE. Copper(II) complexes of glycylglycine. Biochemistry. 1964;3:11691174. .

  • 16. Wyrzykowski, D, Chmurzyński, L. Thermodynamics of citrate complexation with Mn2+, Co2+, Ni2+ and Zn2+ ions. J Thermal Anal Calorim. 2010;102:6164. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 17. Panuszko, A, Bruździak, P, Zielkiewicz, J, Wyrzykowski, D, Stangret, J. Effects of urea and trimethylamine-N-oxide on the properties of water and the secondary structure of hen egg white lysozyme. J Phys Chem B. 2009;113:1479714809. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 18. Brandariz, I, Barriada, J, Vilarino, T, de Vicente, MS. Comparison of several calibration procedures for glass electrodes in proton concentration. Monatsh Chem. 2004;135:14751488. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19. Grossoehme, NE, Akilesh, S, Guerinot, M, Wilcox, DE. Metal-binding thermodynamics of the histidine-rich sequence from the metal-transport protein IRT1 of Arabidopsis thaliana. Inorg Chem. 2006;45:85008508. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 20. Pasquarello, A, Petri, I, Salmon, PS, Parisel, O, Car, R, Tóth, É, Powell, DH, Fischer, HE, Helm, L, Merbach, AE. First solvation shell of the Cu(II) aqua ion: evidence for fivefold coordination. Science. 2001;291:856859. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 21. Amira, S, Spångberg, D, Hermansson, K. Distorted five-fold coordination of Cu2+(aq) from a Car-Parrinello molecular dynamics simulation. Phys Chem Chem Phys. 2005;7:28742880. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 22. Baker, BM, Murphy, KP. Evaluation of linked protonation effects in protein binding reactions using isothermal titration calorimetry. Biophys J. 1996;71:20492055. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 23. Fukada, H, Takahashi, K. Enthalpy and heat capacity changes for the proton dissociation of various buffer components in 0.1M potassium chloride. Proteins. 1998;33:159166. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 24. Haq, I, O’Brien, R, Lagunavicius, A, Siksnys, V, Ladbury, JE. Specific DNA recognition by the type II restriction endonuclease MunI: the effect of pH. Biochemistry. 2001;40:1496014967. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 25. Goldberg, RN, Kishore, N, Lennen, RM. Thermodynamic quantities for the ionization reactions of buffers. J Phys Chem Ref Data. 2002;31:231270. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 26. Gomez, J, Freire, E. Thermodynamic mapping of the inhibitor site if the aspartic protease endothiapepsin. J Mol Biol. 1995;252:337350. .

  • 27. Good, NE, Winget, GD, Winter, W, Connolly, TN, Izawa, S, Singh, RMM. Hydrogen ion buffers for biological research. Biochemistry. 1966;5:467477. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 28. Azab, HA, Orabi, AS, El-Salam, ETA. Role of biologically important zwitterionic buffer secondary ligands on the stability of the mixed-ligand complexes of divalent metal ions and adenosine 5′-Mono-, 5′-Di-, and 5′-Triphosphate. J Chem Eng Data. 2001;46:346354. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 29. Hernick, M, Gennadios, HA, Whittington, DA, Rusche, KM, Christianson, DW, Fierke, CA. UDP-3-O-((R)-3-hydroxymyristoyl)-N-acetylglucosamine deacetylase functions through a general acid-base catalyst pair mechanism. J Biol Chem. 2005;280:1696916978. .

    • Crossref
    • Search Google Scholar
    • Export Citation

Manuscript Submission: HERE

  • Impact Factor (2019): 2.731
  • Scimago Journal Rank (2019): 0.415
  • SJR Hirsch-Index (2019): 87
  • SJR Quartile Score (2019): Q3 Condensed Matter Physics
  • SJR Quartile Score (2019): Q3 Physical and Theoretical Chemistry
  • Impact Factor (2018): 2.471
  • Scimago Journal Rank (2018): 0.634
  • SJR Hirsch-Index (2018): 78
  • SJR Quartile Score (2018): Q2 Condensed Matter Physics
  • SJR Quartile Score (2018): Q2 Physical and Theoretical Chemistry

For subscription options, please visit the website of Springer.

Journal of Thermal Analysis and Calorimetry
Language English
Size A4
Year of
Foundation
1969
Volumes
per Year
4
Issues
per Year
24
Founder Akadémiai Kiadó
Founder's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Publisher Akadémiai Kiadó
Springer Nature Switzerland AG
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
CH-6330 Cham, Switzerland Gewerbestrasse 11.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 1388-6150 (Print)
ISSN 1588-2926 (Online)