Authors:
J. Farjas GRMT, Department of Physics, University of Girona, Campus Montilivi, E17071, Girona, Catalonia, Spain

Search for other papers by J. Farjas in
Current site
Google Scholar
PubMed
Close
and
P. Roura GRMT, Department of Physics, University of Girona, Campus Montilivi, E17071, Girona, Catalonia, Spain

Search for other papers by P. Roura in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

There are many mathematical methods to determine the activation energy from non-isothermal experiments. However, controversies arise over the different values obtained by these methods. We will show that the origin of these discrepancies is either inaccurate approximations of the so-called temperature integral or the occurrence of complex transformations. We will review and compare the most commonly used methods. For those methods that lack accuracy, we will introduce simple numerical modifications to make them exact. In addition, we will introduce a new method that allows easy and accurate determination of the activation energy.

  • 1. Flynn, JH. The isoconversional method for determination of energy of activation at constant heating rates. J Therm Anal Calorim. 1983;27:95102. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 2. Sbirrazzuoli, N, Girault, Y, Elégant, L. Simulations for evaluation of kinetic methods in differential scanning calorimetry. Part 3—peak maximum evolution methods and isoconversional methods. Thermochim Acta. 1997;293:2537. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 3. Vyazovkin, S, Wight, CA. Isothermal and nonisothermal reaction kinetics in solids: in search of ways toward consensus. J Phys Chem A. 1997;101:82798284. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 4. Vyazovkin, S, Wight, CA. Kinetics in solids. Annu Rev Phys Chem. 1997;48:125149. .

  • 5. Brown, ME, Maciejewski, M, Vyazovkin, S, Nomen, R, Sempere, J, Burnham, A, Opfermann, J, Strey, R, Anderson, HL, Kemmler, A, Keuleers, R, Janssens, J, Desseyn, HO, Li, CR, Tang, TB, Roduit, B, Malek, J, Mitsuhashi, T. Computational aspects of kinetic analysis: part A: the ICTAC kinetics project-data, methods and results. Thermochim Acta. 2000;355:125143. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 6. Starink, MJ. The determination of activation energy from linear heating rate experiments: a comparison of the accuracy of isoconversion method. Thermochim Acta. 2003;404:163176. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7. Roduit, B, Dermaut, W, Lunghi, A, Folly, P, Berger, B, Sarbach, A. Advanced kinetics-based simulation of time to maximum rate under adiabatic conditions. J Therm Anal Calorim. 2008;93:163173. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8. Brown, M, Dollimore, D, Galwey, A. Comprehensive chemical kinetics Bamford, C, Tipper, CFH, eds. Reactions in the solid state. 22 Amsterdam: Elsevier; 1980 41113. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 9. Šesták, J. Thermophysical properties of solids, their measurements and theoretical analysis. vol 12D. Amsterdam: Elsevier; 1984.

  • 10. Coats, AW, Redfern, JP. Kinetic parameters from thermogravimetric data. Nature. 1964;201:6869. .

  • 11. Farjas, J, Roura, P. Simple approximate analytical solution for nonisothermal single-step transformations: kinetic analysis. AIChE J. 2008;54:21452154. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 12. Farjas, J, Butchosa, N, Roura, P. A simple kinetic method for the determination of the reaction model from non-isothermal experiments. J Therm Anal Calorim. 2010;102:615625. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13. Ozawa, T. A new method of analyzing thermogravimetric data. Bull Chem Soc Jpn. 1965;38:18811886. .

  • 14. Flynn, JH, Wall, LA. A quick direct method for determination of activation energy from thermogravimetric data. Polym Lett. 1966;4:323328. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15. Doyle, CD. Series approximations to equation of thermogravimetric data. Nature. 1965;207:290291. .

  • 16. Starink, MJ. A new method for the derivation of activation energies from experiments performed at constant heating rate. Thermochim Acta. 1996;288:97104. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 17. Lyon, RE. An integral method of nonisothermal kinetic analysis. Thermochim Acta. 1997;297:117124. .

  • 18. Cai, J, Chen, S. A new iterative linear integral isoconversional method for the determination of the activation energy varying with the conversion degree. J Comput Chem. 2009;30:19861991. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19. Walter G , Cahill WF. 5. Exponential integral and related functions. Handbook of mathematical functions. In: Abramowitz M, Stegun IA, editors. New York: Dover Publications Inc.; 1972 p. 228231.

    • Search Google Scholar
    • Export Citation
  • 20. Kissinger, HE. Reaction kinetics in differential thermal analysis. Anal Chem. 1957;29:17021706. .

  • 21. Akahira, T, Sunose, T. Trans. joint convention of four electrical institutes, Research report Chiba Institute of Technology. Sci Technol. 1971;16:2231.

    • Search Google Scholar
    • Export Citation
  • 22. Murray, P. White kinetics of the thermal dehydration of clays, part IV: interpretation of the differential thermal analysis of clays. Trans Br Ceram Soc. 1955;54:204238.

    • Search Google Scholar
    • Export Citation
  • 23. Vyazovkin, S. Evaluation of activation energy of thermally stimulated solid-state reactions under arbitrary variation of temperature. J Comput Chem. 1997;18:393402. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 24. Vyazovkin, S, Dollimore, DJ. Linear and nonlinear procedures in isoconversional computations of the activation energy of nonisothermal reactions in solids. Chem Inf Comput Sci. 1996;36:4245.

    • Search Google Scholar
    • Export Citation
  • 25. Vyazovkin, S. Advanced isoconversional method. J Therm Anal Calorim. 1997;49:14931499. .

  • 26. Brent, RP. Algorithms for minimization without derivatives. Englewood Cliffs, NJ: Prentice-Hall; 1973.

  • 27. Press, WH, Teukolsky, SA, Vetterling, WT, Flannery, B. Numerical recipes in C. Cambridge: Cambridge University Press; 1992.

  • 28. Li, CR, Tang, TB. Dynamic thermal analysis of solid-state reactions. J Therm Anal Calorim. 1997;49:12431248. .

  • 29. Li, CR, Tang, TB. A new method for analysing non-isothermal thermoanalytical data from solid-state reactions. Thermochim Acta. 1999;325:4346. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 30. Boswell, PG. On the calculation of activation-energies using a modified Kissinger method. J Therm Anal Calorim. 1980;18:353358. .

  • 31. Friedman, HL. Kinetics of thermal degradation of char-forming plastics from thermogravimetry. Application to a phenolic plastic. J Polym Sci C. 1964;6:183195.

    • Search Google Scholar
    • Export Citation
  • 32. Roduit, B, Folly, P, Berger, B, Mathieu, J, Sarbach, A, Andres, H, Ramin, M, Vogelsanger, B. Evaluating sadt by advanced kinetics-based simulation approach. J Therm Anal Calorim. 2008;93:153161. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 33. Ortega, A. A simple and precise linear integral method for isoconversional data. Thermochim Acta. 2008;474:8186. .

  • 34. Farjas J , Roura P. Isoconversional analysis of solid state transformations: a critical review. II complex transformations. J Therm Anal Calorim. This issue. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 35. Vyazovkin, S. Modification of the integral isoconversional method to account for variation in the activation energy. J Comput Chem. 2001;22:178183. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 36. Vyazovkin, S. Some confusion concerning integral isoconversional methods that may result from the paper by budrugeac and segal “some methodological problems concerning nonisothermal kinetic analysis of heterogeneous solid–gas reactions”. Int J Chem Kinet. 2002;34:418420. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 37. Yinnon, H, Uhlmann, DR. Applications of thermoanalytical techniques to the study of crystallization kinetics in glass-forming liquids.1. Theory. J Non-Cryst Solids. 1983;54:253275. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 38. Vyazovkin, S, Sbirrazzuoli, N. Isoconversional kinetic analysis of thermally stimulated processes in polymers. Macromol Rapid Commun. 2006;27:15151532. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 39. Lee, JW. Hydrogen storage and desorption properties of Ni-dispersed carbon nanotubes. Appl Phys Lett. 2006;88:143126-1143126-30.

    • Search Google Scholar
    • Export Citation
  • 40. Padhi, SK. Solid-state kinetics of thermal release of pyridine and morphological study of [Ni(ampy)(2)(NO3)(2)]; ampy=2-picolylamine. Thermochim Acta. 2006;448:16. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 41. Roura, P, Farjas, J. Analytical solution for the Kissinger equation. J Mater Res. 2009;24:30953098. .

  • 42. Cai, JM, Liu, RH. On evaluate of the integral methods for the determination of the activation energy. J Therm Anal Calorim. 2009;96:331333. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 43. Órfão, JM. On the evaluation of the accuracy of activation energies calculated by integral methods: rebuttal of a putative correction. J Therm Anal Calorim. 2010;100:593597. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 44. Órfão, JM. Review and evaluation of the approximations to the temperature integral. AIChE J. 2007;53:29052915. .

  • 45. Senum, GI, Yang, RT. Rational approximations of integral of Arrhenius function. J Therm Anal Calorim. 1977;11:445449. .

  • 46. Heal, GR. Evaluation of the integral of the Arrhenius function by a series of Chebyshev polynomials: use in the analysis of non-isothermal kinetics. Thermochim Acta. 1999;340–341:6976. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 47. Flynn, JH. The ‘temperature integral’—its use and abuse. Thermochim Acta. 1997;300:8392. .

  • Collapse
  • Expand

To see the editorial board, please visit the website of Springer Nature.

Manuscript Submission: HERE

For subscription options, please visit the website of Springer Nature.

Journal of Thermal Analysis and Calorimetry
Language English
Size A4
Year of
Foundation
1969
Volumes
per Year
1
Issues
per Year
24
Founder Akadémiai Kiadó
Founder's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Publisher Akadémiai Kiadó
Springer Nature Switzerland AG
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
CH-6330 Cham, Switzerland Gewerbestrasse 11.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 1388-6150 (Print)
ISSN 1588-2926 (Online)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Apr 2024 40 0 0
May 2024 20 0 0
Jun 2024 18 0 0
Jul 2024 23 0 0
Aug 2024 37 0 0
Sep 2024 35 0 0
Oct 2024 23 0 0