View More View Less
  • 1 GRMT, Department of Physics, University of Girona, Campus Montilivi, E17071, Girona, Spain
Restricted access

Abstract

We will analyze the discrepancies between isoconversional methods when applied to complex transformations. The practical analysis of particular transformations leads us to conclude that (a) conventional integral methods based on integrated equations are essentially incorrect when dealing with variable activation energy; and (b) experimental inaccuracies and noise tend to give an apparent evolution of the energy variation, so that, non-constancy of the activation energy does not necessarily mean deviations from single-step transformations with constant activation energy.

  • 1. Farjas J , Roura P. Isoconversional analysis of solid state transformations: a critical review. I Single step transformations with constant activation energy. J Therm Anal Calorim. 2011. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 2. Farjas, J, Roura, P. Modification of the Kolmogorov–Johnson–Mehl–Avrami rate equation for non-isothermal experiments and its analytical solution. Acta Mater. 2006;54:55735579. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 3. Vyazovkin, S. On the phenomenon of variable activation energy for condensed phase reactions. New J Chem. 2000;24:913917. .

  • 4. Vyazovkin, S, Wight, CA. Kinetics in solids. Annu Rev Phys Chem. 1997;48:125149. .

  • 5. Elder, JP. Multiple reaction scheme modeling.1. Independent and competitive 1st order reactions. J Therm Anal Calorim. 1984;29:13271342.

    • Search Google Scholar
    • Export Citation
  • 6. Vyazovkin, S. Kinetic concepts of thermally stimulated reactions in solids: a view from a historical perspective. Int Rev Phys Chem. 2000;19:4560. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7. Bouzidi, L, Narine, SS. Evidence of critical cooling rates in the nonisothermal crystallization of triacylglycerols: a case for the existence and selection of growth modes of a lipid crystal network. Langmuir. 2010;26:43114319. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8. Criado, JM, González, M, Málek, J, Ortega, A. The effect of the CO2 pressure on the thermal decomposition kinetics of calcium carbonate. Thermochim Acta. 1995;254:121127. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 9. Vyazovkin, S. Evaluation of activation energy of thermally stimulated solid-state reactions under arbitrary variation of temperature. J Comput Chem. 1997;18:393402. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10. Rottler, J, Robbins, MO. Unified description of aging and rate effects in yield of glassy solids. Phys Rev Lett. 2005;95:225504 .

  • 11. Vyazovkin, S. Modification of the integral isoconversional method to account for variation in the activation energy. J Comput Chem. 2001;22:178183. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 12. Clavaguera, N, Saurina, J, Lheritier, J, Masse, J, Chauvet, A, Clavaguera-Mora, MT. Eutectic mixtures for pharmaceutical applications: a thermodynamic and kinetic study. Thermochim Acta. 1997;290:173180. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13. Berlanga, R, Farjas, J, Saurina, J, Suñol, JJ. A modified method for T-CR-T diagram construction: application to polyethylene glycol. J Therm Anal Calorim. 1998;52:765772. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 14. Vyazovkin, S, Sbirrazzuoli, N. Isoconversional approach to evaluating the Hoffman-Lauritzen parameters (U∗ and Kg) from the overall rates of nonisothermal crystallization. Macromol Rapid Commun. 2004;25:733738. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15. Vyazovkin, S, Dranca, I. Isoconversional analysis of combined melt and glass crystallization data. Macromol Chem Phys. 2006;207:2025. .

  • 16. Chen, K, Vyazovkin, S. Temperature dependence of sol-gel conversion kinetics in gelatin-water system. Macromol Biosci. 2009;9:383392. .

  • 17. Farjas, J, Roura, P. Simple approximate analytical solution for nonisothermal single-step transformations: kinetic analysis. AIChE J. 2008;54:21452154. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 18. Press, WH, Teukolsky, SA, Vetterling, WT, Flannery, B. Numerical recipes in C. Cambridge: Cambridge University Press; 1992.

  • 19. Hemminger, WF, Sarge, SM. The baseline construction and its influence on the measurement of heat with differential scanning calorimeters. J Therm Anal Calorim. 1991;37:14551477. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 20. Roduit, B, Xia, L, Folly, P, Berger, B, Mathieu, J, Sarbach, A, Andres, H, Ramin, M, Vogelsanger, B, Spitzer, D, Moulard, H, Dilhan, D. The simulation of the thermal behavior of energetic materials based on DSC and HFC signals. J Therm Anal Calorim. 2008;93:143152. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 21. Flynn, JH, Wall, LA. A quick direct method for determination of activation energy from thermogravimetric data. Polym Lett. 1966;4:323328. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 22. Burnham, AK, Braun, RL. Global kinetic analysis of complex materials. Energy Fuels. 1999;13:122. .

  • 23. Budrugeac, P, Petre, AL, Segal, E. Differential non-linear isoconversional procedure for evaluating the activation energy of non-isothermal reactions. J Therm Anal Calorim. 1996;47:123 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 24. Budrugeac, P. Differential non-linear isoconversional procedure for evaluating the activation energy of non-isothermal reactions. J Therm Anal Calorim. 2002;68:131139. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 25. Spinella, C, Lombardo, S, Priolo, FJ. Crystal grain nucleation in amorphous silicon. Appl Phys. 1998;84:53835414. .

  • 26. Farjas, J, Roura, P, Roca, I, Cabarrocas, P. Grain size control by means of solid phase crystallization of amorphous silicon Chu, V, Miyazaki, S, Nathan, A, Yang, J, Yang, J, Zan, H, eds. Amorphous and polycrystalline thin-film silicon science and technology vol 989. Warrendale: Mater Res Soc; 2007 139144.

    • Search Google Scholar
    • Export Citation
  • 27. Kumoni, H, Yonehara, T. Transient nucleation and manipulation of nucleation sites in solid-state crystallization of a-si films. J Appl Phys. 1994;75:28842901. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 28. Kempen, ATW, Sommer, F, Mittemeijer, EJ. Determination and interpretation of isothermal and non-isothermal transformation kinetics; the effective activation energies in terms of nucleation and growth. J Mater Sci. 2002;37:13211332. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 29. Tkatch, VI, Limanovskii, AI, Yu Kameneva, VJ. Studies of crystallization kinetics of Fe40Ni40P14B6 and Fe80B20 metallic glasses under non-isothermal conditions. Mater Sci. 1997;32:56695677. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 30. Liu, F, Sommer, F, Bos, C, Mittemeijer, EJ. Analysis of solid state phase transformation kinetics: models and recipes. Int Mater Rev. 2007;52:193212. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 31. Avrami, M. Kinetics of phase change. I. General theory. J Chem Phys. 1939;7:11031112. .

  • 32. Avrami, M. Kinetics of phase change. II Transformation-time relations for random distribution of nuclei. J Chem Phys. 1940;8:212224. .

  • 33. Avrami, M. Granulation, phase change, and microstructure kinetics of phase change. III. J Chem Phys. 1941;9:177184. .

  • 34. Johnson, WA, Mehl, RF. Reaction kinetics in processes of nucleation and growth. Trans AIME. 1939;135:416442.

  • 35. Kolmogorov, A. On the static theory of metal crystallization. Izv Akad Nauk USSR Ser Fiz. 1937;3:355359.

  • 36. Farjas, J, Roura, R. Numerical model of solid phase transformations governed by nucleation and growth: microstructure development during isothermal crystallization. Phys Rev B. 2007;75:184112 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 37. Farjas, J, Rath, C, Roura, P, Roca i Cabarrocas, P. Crystallization kinetics of hydrogenated amorphous silicon thick films grown by plasma-enhanced chemical vapour deposition. Appl Surf Sci. 2004;238:165168. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 38. Farjas, J, Butchosa, N, Roura, P. A simple kinetic method for the determination of the reaction model from non-isothermal experiments. J Therm Anal Calorim. 2010;102:615625. .

    • Crossref
    • Search Google Scholar
    • Export Citation

Manuscript Submission: HERE

  • Impact Factor (2019): 2.731
  • Scimago Journal Rank (2019): 0.415
  • SJR Hirsch-Index (2019): 87
  • SJR Quartile Score (2019): Q3 Condensed Matter Physics
  • SJR Quartile Score (2019): Q3 Physical and Theoretical Chemistry
  • Impact Factor (2018): 2.471
  • Scimago Journal Rank (2018): 0.634
  • SJR Hirsch-Index (2018): 78
  • SJR Quartile Score (2018): Q2 Condensed Matter Physics
  • SJR Quartile Score (2018): Q2 Physical and Theoretical Chemistry

For subscription options, please visit the website of Springer.

Journal of Thermal Analysis and Calorimetry
Language English
Size A4
Year of
Foundation
1969
Volumes
per Year
4
Issues
per Year
24
Founder Akadémiai Kiadó
Founder's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Publisher Akadémiai Kiadó
Springer Nature Switzerland AG
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
CH-6330 Cham, Switzerland Gewerbestrasse 11.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 1388-6150 (Print)
ISSN 1588-2926 (Online)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Apr 2021 1 0 0
May 2021 0 0 0
Jun 2021 0 0 0
Jul 2021 0 0 0
Aug 2021 0 0 0
Sep 2021 1 0 0
Oct 2021 0 0 0