View More View Less
  • 1 Institute of Mineralogy and Crystallography, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 107, 1113, Sofia, Bulgaria
  • | 2 University of Chemical Technology and Metallurgy, 8 Kl. Ohridski Str, 1756, Sofia, Bulgaria
  • | 3 Institute of Catalysis, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 10, 1113, Sofia, Bulgaria
Restricted access

Abstract

FeSO4·H2O and FeSO4 represent the second valence of iron sulphates. Number of studies has been done to understand formation of intermediate sulphates like FeOHSO4 and Fe2O(SO4)2, representing the oxidation of Fe2+ to Fe3+. At selected temperatures, both the thermo-dynamical equilibrium in the Fe–S–O system and the formation of the crystal structures in the solid phase are controlled by the partial pressure of water vapour and oxygen in the gas phase. The effects of the temperature and the partial pressure of gas components on the solid-phase content are demonstrated by phase diagrams. The study puts the accent on the influence of oxygen content in gas environment on processes of thermal decomposition of FeSO4·H2O and FeSO4. At three quantities of oxygen content—0% (100% Ar), 21% (dry air) and 100% (pure O2) the processes of oxidation and formatting metastable iron sulphates were examined by several experimental techniques. The thermal decomposition of samples was investigated by TG–DTG–DTA method in the temperature range 293–1400 K. Partial pressure of water vapour was determined by the quantity of water released from dehydration process of FeSO4·H2O. Infrared spectroscopy, Mössbauer spectroscopy and X-Ray powder diffraction method were used for identification of the new formed solid structures and for characterization of the content of the iron sulphates with different valencies of iron. The experimental data and their analyses give the possibility to determine the different stages of decomposition, related to the formation of intermediates. Depending on gas environment, the basic relationships for reaction kinetics is drawn. It is demonstrated on that correlation exists between the kinetic's parameters and the content of oxygen in the gas phase.

  • 1. Zboril, R, Mashlan, M, Papaefthymiou, V, Hadjipanayis, G 2003 Thermal decomposition of Fe2(SO4)3: demonstration of Fe2O3 polymorphism. J Radioanal Nucl Chem 255 3 413417 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 2. Zboril, R, Mashlan, M, Petridis, D 2002 Polymorphous exhibitions of iron (III) oxide during isothermal oxidative decompositions of iron salts: a key role of the powder layer thickness. Chem Mater 14 3 969982 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 3. Solc, Z, Trojan, M, Brandova, D, Kuchler, M 1988 A study of thermal preparation of iron (III) pigments by means of thermal analysis methods. J Therm Anal 3 2 463469.

    • Search Google Scholar
    • Export Citation
  • 4. Šulcová, P, Trojan, M 2006 Thermal synthesis and properties of the (Bi2O3)1–x(Ho2O3)x pigments. J Therm Anal Calorim 83 3 557559 .

  • 5. Šulcová, P, Trojan, M 2006 Thermal analysis of pigments based on Bi2O3. J Therm Anal Calorim 84 3 737740 .

  • 6. Luxová, J, Trojan, M, Šulcová, P 2005 Application of mechanical activation for the synthesis of the pigment ZnFe2O4 with the spinel structure. Acta Metall Slovaca 11:437449.

    • Search Google Scholar
    • Export Citation
  • 7. Mesíková, Ž, Šulcová, P, Trojan, M 2006 Yellow pigments based on Fe2TiO5 and TiO2. J Therm Anal Calorim 83 3 561563 .

  • 8. Mesíková, Ž, Šulcová, P, Trojan, M 2006 Preparation and practical application of spinel pigment Co0.46Zn0.55(Ti0.064Cr0.91)2O4. J Therm Anal Calorim 84 3 733736 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 9. Zboril, R, Mashlan, M, Petridis, D, Krausova, D, Pikal, P 2002 The role of intermediates in the process of red ferric pigment manufacture from FeSO4.7H2O. Hyperfine Interact 139 1-4 437445 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10. Kennedy, T, Sturman, BT 1975 The oxidation of iron (II) sulphide. J Therm Anal 8:329337 .

  • 11. Almeida, C, Giannetti, B 2002 Comparative study of electrochemical and thermal oxidation of pyrite. J Solid State Electrochem 6:111118 .

  • 12. Ferrow, EA, Mannerstrand, M, Berg, B 2005 Reaction kinetics and oxidation mechanisms of the conversion of pyrite to ferrous sulphate: a Mössbauer spectroscopy study. Hyperfine Interact 163:109119 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13. Guilin, Hu, Dam-Johansen, Kim, Wede, Stig, Peter Hansen, Jens 2006 Decomposition and oxidation of pyrite. Prog Energy Combust Sci 2:295314.

    • Search Google Scholar
    • Export Citation
  • 14. Huiping, Hu, Chen, Qiyuan, Yin, Zhoulan, Zhang, Pingmin 2003 Thermal behaviors of mechanically activated pyrites by thermogravimetry. Thermochim Acta 398:233240 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15. Usher, CR, Cleveland, CA, Strongin, DR, Schoonen, MA 2004 Origin of oxygen in sulphate during pyrite oxidation with water and dissolved oxygen: an in situ horizontal attenuated total reflectance infrared spectroscopy isotope study. Environ Sci Technol 38 21 56045606 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 16. Frost Ray, L, Palmer Sara, J, Kristóf, J, Horváth, E 2010 Dynamic and controlled rate thermal analysis of halotrichite. J Therm Anal Calorim 99:501507 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 17. Navrotsky, Al, Lázár Forray, F, Drouet, Ch 2005 Jarosite stability on Mars. Icarus 176:250253 .

  • 18. Pelovski, Y, Petkova, V, Nikolov, S 1996 Study of the mechanism of the thermochemical decomposition of ferrous sulphate monohydrate. Thermochim Acta 274:273280 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19. Pelovski, Y, Petkova, V 1997 Mechanism and kinetics of inorganic sulphates decomposition. J Therm Anal 49:12271241 .

  • 20. Petkova, V, Pelovski, Y 2001 Investigation on the thermal properties of Fe2O(SO4)2: part I. J Therm Anal Calorim 64:10251035 .

  • 21. Petkova, V, Pelovski, Y 2001 Investigation on the Thermal Properties of Fe2O(SO4)2: part II. J Therm Anal Calorim 64:10371044 .

  • 22. Petkova, V, Pelovski, Y 2008 Comparative DSC study on thermal decomposition of iron sulphates. J Therm Anal Calorim 93 3 847852 .

  • 23. Krumm, S 1994 WINFIT 1.0.A computer program for X-ray diffraction line profile analysis. XIII Conference on Clay Mineralogy and Petrology. Acta Univ Carol Geol 38:253261.

    • Search Google Scholar
    • Export Citation
  • 24. Kraus, W, Nolze, G 1996 PowderCell—a program to visualize crystal structures, calculate the corresponding powder patterns and refine experimental curves. J Appl Cryst 29:301303 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 25. Powder Diffraction File Alphabetical Index, JCPDS, International Centre for Diffraction Data, Pennsylvania 19073-3273, sets 1-51:2001.

    • Search Google Scholar
    • Export Citation
  • 26. Nakamoto, K 1977 Infrared spectra of the inorganic and coordination compounds 3 Wiley New York 153154.

  • 27. Masset, P, Poinso, JY, Poignet, JC 2006 TG/DTA/MS study of the thermal decomposition of FeSO4·6H2O. J Therm Anal Calorim 83 2 457462 .

  • 28. Broun, ME, Dollimor, D, Galwey, AK 1980 Reaction in the solid state Elsevier Amsterdam, Oxford, New York.

  • 29. Scordari, F 1981 Crystal chemical implications on some alkali hydrated sulphates. Tsch Mineral Petrogr Mitt 28 3 207222 .

  • 30. Scordari, F, Ventruti, G, Gualtieri Alessandro, F 2004 The structure of metahohmannite, Fe2 3+[O(SO4)2].4H2O, by in situ synchrotron. Am Mineral 89:365370.

    • Search Google Scholar
    • Export Citation
  • 31. Ventruti, G, Scordari, F, Schingaro, E, Gualtieri, AF, Meneghini, C 2005 The order-disorder character of FeOHSO4 obtained from the thermal decomposition of metahohmannite, Fe2 3+(H2O)4[O(SO4)2]. Am Mineral 90 4 679686 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 32. Majzlan, J, Navrotsky, Al, Blainemccleskey, R, ChN, Alpers 2006 Thermodynamic properties and crystal structure refinement of ferricopiapite, coquimbite, rhomboclase, and Fe2(SO4)3(H2O)5. Eur J Mineral 18:175186 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 33. Majzlan, J, Navrotsky, Al, Schwertmann, U 2004 Thermodynamics of iron oxides: part III. Enthalpies of formation and stability of ferrihydrite (∼Fe(OH)3), schwertmannite (∼FeO(OH)3/4(SO4)1/8), and ∊-Fe2O3. Geochim Cosmochim Acta 68 5 10491059 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 34. Tõnsuaadu, K, Gruselle, M, Villain, F, Thouvenot, R, Peld, M, Mikli, V, Traksmaa, R, Gredin, P, Carrier, X, Salles, L 2006 A new glance at ruthenium sorption mechanism on hydroxy, carbonate, and fluor apatites: analytical and structural studies. J Colloid Interface Sci 304 2 283291 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 35. Sherina, Peroos, Zhimei, Du NH de Leeuw 2006 A computer modelling study of the uptake, structure and distribution of carbonate defects in hydroxy-apatite. Biomaterials 27 9 21502161 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 36. Tônsuaadu, K, Peld, M, Leskelä, T, Mannonen, R, Niinistö, L, Veiderma, M 1995 A thermoanalytical study of synthetic carbonate-containing apatites. Thermochim Acta 256 1 5565 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 37. Wiria, FE, Leong, KF, Chua, CK, Liu, Y 2007 Poly-∊-caprolactone/hydroxyapatite for tissue engineering scaffold fabrication via selective laser sintering. Acta Biomater 3 1 112 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 38. Jokanović, V, Jokanović, B, Marković, D, Živojinović, V, Pašalić, S, Izvonar, D, Plavšić, M 2008 Kinetics and sintering mechanisms of hydro-thermally obtained hydroxyapatite. Mater Chem Phys 111 1 180185 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 39. Bianco, A, Cacciotti, I, Lombardi, M, Montanaro, L 2009 Si-substituted hydroxyapatite nanopowders: synthesis, thermal stability and sinterability. Mater Res Bull 44 2 345354 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 40. He, QJ, Huang, ZL, Cheng, XK, Yu, J 2008 Thermal stability of porous A-type carbonated hydroxyapatite spheres. Mater Lett 62 3 539542 .

  • 41. Lafon, JP, Champion, E, Bernache-Assollant, D, Gibert, R, Danna, AM 2003 Thermal decomposition of carbonated calcium phosphate apatites. J Therm Anal Calorim 72:11271134 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 42. Kannan, S, Ventura, JMG, Ferreira, JMF 2007 Synthesis and thermal stability of potassium substituted hydroxyapatites and hydroxyapatite/β-tricalciumphosphate mixtures. Ceram Int 33 8 14891494 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 43. Stoyanov V . Rheological characteristics of cement pastes, determined by rotational viscometers. In: Proceedings of the X-th international conference on mechanics and technology of composite materials, vol 15-17, Sofia, Bulgaria, September; 2003. pp. 2138.

    • Search Google Scholar
    • Export Citation
  • 44. Ivanov Ya. , Stoyanov V, Kotsilkova R. Rheological estimation of methods for concrete design. In: Proceedings of the XIII-th international congress on rheology, vol 20-25, Cambridge, UK, August; 2000. pp. 2057.

    • Search Google Scholar
    • Export Citation
  • 45. Ivanov Ya , Yanovsky Yu, Stoyanov V, Karnet Yu, On the influence of interface layers on the properties of polymer nanocomposites, In: Proceedings of the III-rd National Seminar on Nanotechnology, Sofia, Bulgaria, November 30—December 1, 2001, Nanoscience & Nanotechnology ‘02, Balabanova E and Dragieva I editors, Sofia: Heron Press; 2002. pp. 1079.

    • Search Google Scholar
    • Export Citation
  • 46. Lajmi, B, Hidouri, M, Wattiaux, A, Fournés, L, Darriet, J, Ben Amara, M 2003 Crystal structure, Mössbauer spectroscopy, and magnetic properties of a new potassium iron oxyphosphate K11Fe15(PO4)18O related to the Langbeinite-like compounds. J Alloys Compd 361 1–2 7783 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 47. Hibino, T, Yasumasa, Y, Katsunori, K, Atsumu, T 1995 Decarbonation behavior of Mg–Al–CO3 hydrotalcite-like compounds during heat treatment. Clays Clay Miner 43 4 427432 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 48. Petrova, N, Mizota, T, Fujiwara, K 2001 Hydration heats of zeolites for evaluation as heat exchangers. J Therm Anal Calorim 64:157 .

  • 49. Mizota, T, Petrova, N, Nakayama, N 2001 Entropy of zeolitic water. J Therm Anal Calorim 64:211217 .

  • 50. Stanimirova, Ts, Petrova, N 1999 DTA and TG study of minerals from the hydrotalcite–takovite isomorphic series: II. Influence of M2+/M3+ cation ratio. Compt Rend Acad Bulg Sci 52 11-12 5962.

    • Search Google Scholar
    • Export Citation
  • 51. Stanimirova, Ts, Piperov, N, Petrova, N, Kirov, G 2004 Thermal evolution of Mg–Al–CO3 hydrotalcites. Clay Miner 39 2 177191 .

  • 52. Petrova, N, Mizota, T, Stanimirova, Ts, Kirov, G 2003 Sorption of water vapor on a low-temperature hydrotalcite metaphase: calorimetric study. Microporous Mesoporous Mater 63 1-3 139145 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 53. Stanimirova, Ts, Vergilov, I, Kirov, G, Petrova, N 1999 Thermal decomposition products of hydrotalcite-like compounds: low-temperature metaphases. J Mater Sci 34 17 41534161 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 54. Holgado, MJ, Labajos, FM, Montero, MJS, Rives, V 2003 Thermal decomposition of Mg/V hydrotalcites and catalytic performance of the products in oxidative dehydrogenation reactions. Mater Res Bull 38:18791891 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 55. Stoyanov V . A concept of the rheological behaviour of suspensions, In: Progress and trends in rheology, Emri I editor, In: Proceedings of the V-th European Rheology Conference, Slovenia, Portoroz; 1998. pp. 597598.

    • Search Google Scholar
    • Export Citation
  • 56. Yörükoğulları, E, Yilmaz, G, Dikmen, S 2010 Thermal treatment of zeolitic tuff. J Therm Anal Calorim 100 3 925928 .

Manuscript Submission: HERE

  • Impact Factor (2019): 2.731
  • Scimago Journal Rank (2019): 0.415
  • SJR Hirsch-Index (2019): 87
  • SJR Quartile Score (2019): Q3 Condensed Matter Physics
  • SJR Quartile Score (2019): Q3 Physical and Theoretical Chemistry
  • Impact Factor (2018): 2.471
  • Scimago Journal Rank (2018): 0.634
  • SJR Hirsch-Index (2018): 78
  • SJR Quartile Score (2018): Q2 Condensed Matter Physics
  • SJR Quartile Score (2018): Q2 Physical and Theoretical Chemistry

For subscription options, please visit the website of Springer.

Journal of Thermal Analysis and Calorimetry
Language English
Size A4
Year of
Foundation
1969
Volumes
per Year
4
Issues
per Year
24
Founder Akadémiai Kiadó
Founder's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Publisher Akadémiai Kiadó
Springer Nature Switzerland AG
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
CH-6330 Cham, Switzerland Gewerbestrasse 11.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 1388-6150 (Print)
ISSN 1588-2926 (Online)