View More View Less
  • 1 Geology Group, Department of Natural Sciences, The Open University of Israel, The Dorothy de Rothschild Campus, 1 University Road, Raanana, Israel
  • | 2 Department of Geochemistry and Environmental Studies, The Geological Survey of Israel, 30 Malkhei Israel St., 90550, Jerusalem, Israel
Restricted access

Abstract

The thermal processes during progressive calcination of sulfur-rich calcareous oil shales were analyzed using FT-IR spectroscopy and applying curve-fitting technique. The spectroscopic analysis is advantageous in the analysis of amorphous and short-range ordered thermal phases lacking of XRD peaks. The raw calcareous oil shales are composed of organic matter, kaolinite, smectite, calcite, and apatite (francolite). The principal thermal phases are metakaolinite, meta-smectite, free lime, anhydrite, gehlenite, and ellestadite. The thermal reactions observed with increase temperatures includes decomposition of organic matter followed by release of sulfur gas; dehydroxylation of kaolinite; and smectite at 500–600 °C; and thermal transformation to metakaolinite and meta-smectite; decarbonation of microcrystalline calcite to free lime at 600 °C; reaction of the sulfur gas with the free lime; formation of anhydrite at 600 °C; reaction of apatite and formation of ellestadite at 800 °C; reaction of the metakaolinite; the meta-smectite with the free lime; formation of gehlenite at 900 °C. Owingto the sulfatization process, a great part of the sulfur content of the raw oil shales is retained in the calcined ashes and the release of sulfur gas to the atmosphere decreases. Thus, the combustion of calcareous oil shales for energy source has less pollution effect than that of the clayey oil shales. FT-IR spectroscopy and spectral analysis seems to be useful methods for phase analysis of oil shales in combustion industry.

  • 1. Dinur, D, Spiro, B, Aizenshtat, Z. The distribution and isotopic composition of sulfur in organic rich sedimentary rocks. Chem Geol. 1980;31:3751. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 2. Yurum, Y, Levy, M. Quantitative determination of shale oil compounds by gas chromatography-mass spectrometry-selected ion monitoring. Fuel Process Technol. 1985;11:5969. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 3. Yefimov, V, Doilov, S, Pulemiotov, I. Research and experimental processing of high-sulfur oil shales. Oil Shale. 1995;12:317340.

  • 4. Minster, T, Yoffe, O, Nathan, Y, Flexer, A. Geochemistry, mineralogy, and paleoenvironments of deposition of the Oil Shale Member in the Negev. Isr J Earth Sci. 1997;46:4159.

    • Search Google Scholar
    • Export Citation
  • 5. Yoffe, O, Wolfarth, A, Nathan, Y, Cohen, S, Minster, T. Oil shale fueled FBC power plant—ash deposits and fouling problems. Fuel. 2007;86:27142727. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 6. Spiro B . Geochemistry and mineralogy of bituminous rocks in Israel. Unpublished Ph.D. Thesis, Hebrew University of Jerusalem, 1980 (in Hebrew, English abstract).

    • Search Google Scholar
    • Export Citation
  • 7. Yoffe, O, Nathan, Y, Wolfarth, A, Cohen, S, Shoval, S. The chemistry and mineralogy of the Negev oil shale ashes. Fuel. 2002;81:11011117. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8. Heller-Kallai, L, Esterson, G, Aizenshtat, Z, Pismen, M. Mineral reactions and pyrolysis of Israeli oil shale. J Anal Appl Pyrolysis. 1984;6:375389. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 9. Maenami, H, Isu, N, Ishida, EH, Mitsuda, T. Electron microscopy and phase analysis of fly ash from pressurized fluidized bed combustion. Cem Concr Res. 2004;34:781788. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10. Shoval, S, Michaelian, KH, Boudeulle, M, Panczer, G, Lapides, I, Yariv, S. Study of thermally treated Dickite by infrared and micro-Raman spectroscopy using curve-fitting technique. J Therm Anal Calorim. 2002;69:205225. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11. Farmer, VC. The Infrared spectra of minerals, monograph 4. London: Mineralogical Society; 1974.

  • 12. Shoval, S, Gaft, M, Beck, P, Kirsh, Y. The thermal behavior of limestone and monocrystalline calcite tempers during firing and their use in ancient vessels. J Therm Anal. 1993;40:263273. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13. Heller-Kallai, L, Miloslavski, I, Aizenshtat, Z. Dissolution of calcite by steam derived from clay minerals. Naturwissenschaften. 1986;73:615616. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 14. Heller-Kallai, L, Miloslavski, I, Aizenshtat, Z. Volatile products of clay mineral pyrolysis revealed by their effects on calcite. Clay Miner. 1987;22:339348. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15. Mackenzie, RC, Rahman, AA. Interaction of kaolinite with calcite on heating: I. instrumental and procedural factors for one kaolinite in air and nitrogen. Thermochim Acta. 1987;121:5169. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 16. Shoval, S. Mineralogical changes upon heating calcitic and dolomitic marl rocks. Thermochim Acta. 1988;135:243252. .

  • 17. Mackenzie RC . Differential thermal analysis, vols 1, 2. London: Academic Press; 1970, 1972.

  • 18. Matthews, A, Nathan, Y. The decarbonation of carbonate-fluorapatite (francolite). Am Mineral. 1977;62:565573.

  • 19. Spiro B . Geochemistry and mineralogy of bituminous rocks in Israel. Ph.D. Thesis, Hebrew University of Jerusalem, 1980.

  • 20. Tullin, C, Nyman, G, Ghardashkhani, S. Direct sulfation of CaCO3: the influence of CO2 partial pressure. Energy Fuels. 1993;7:512519. .

  • 21. Shoval, S, Yofe, O, Nathan, Y. Distinguishing between natural and recarbonated calcite in oil shale ashes. J Therm Anal Calorim. 2003;71:883892. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 22. Harada, K, Nagashima, K, Nakao, K, Kato, A. Hydroxylellestadite, a new apatite from Chichibu mine, Saitama Prefecture, Japan. Am Mineral. 1971;56:15071518.

    • Search Google Scholar
    • Export Citation
  • 23. Rouse, RC, Dunn, JP. A contribution to the crystal chemistry of ellestadite and the silicate sulfate apatites. Am Mineral. 1982;67:9096.

    • Search Google Scholar
    • Export Citation
  • 24. Elliott, JC. Structure and chemistry of the apatites and other calcium orthophosphates. London: Elsevier; 1994 230234.

  • 25. Knubovets, R, Nathan, Y, Shoval, S, Rabinowitz, J. Thermal transformations in phosphorites. J Therm Anal. 1997;50:229239. .

  • 26. Baumer, A, Caruba, R, Ganteaume, M. Carbonate-fluorapatite: mise en evidence de la substitutions couplees 2 PO4→SiO4+SO4 par spectrometrie infrarouge. Eur J Mineral. 1990;2:297304.

    • Search Google Scholar
    • Export Citation
  • 27. Heller, L, Farmer, VC, Mackenzie, RC, Mitchell, BD, Taylor, HFW. The dehydroxylation and rehydroxylation of triphormic dioctahedral clay minerals. Clay Miner Bull. 1962;5:5672. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 28. Mackenzie, RC, Rahman, AA, Moir, HM. Interaction of kaolinite with calcite on heating II. Mixtures with one kaolinite in air and nitrogen. Thermochim Acta. 1988;121:5169. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 29. Riccardi, MP, Messiga, B, Duminuco, P. An approach to the dynamics of clay firing. Appl Clay Sci. 1999;15:393409. .

Manuscript Submission: HERE

  • Impact Factor (2019): 2.731
  • Scimago Journal Rank (2019): 0.415
  • SJR Hirsch-Index (2019): 87
  • SJR Quartile Score (2019): Q3 Condensed Matter Physics
  • SJR Quartile Score (2019): Q3 Physical and Theoretical Chemistry
  • Impact Factor (2018): 2.471
  • Scimago Journal Rank (2018): 0.634
  • SJR Hirsch-Index (2018): 78
  • SJR Quartile Score (2018): Q2 Condensed Matter Physics
  • SJR Quartile Score (2018): Q2 Physical and Theoretical Chemistry

For subscription options, please visit the website of Springer.

Journal of Thermal Analysis and Calorimetry
Language English
Size A4
Year of
Foundation
1969
Volumes
per Year
4
Issues
per Year
24
Founder Akadémiai Kiadó
Founder's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Publisher Akadémiai Kiadó
Springer Nature Switzerland AG
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
CH-6330 Cham, Switzerland Gewerbestrasse 11.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 1388-6150 (Print)
ISSN 1588-2926 (Online)