Authors:
Isaak Lapides Institute of Chemistry, The Hebrew University of Jerusalem, Campus Edmund Y. Safra, 91904, Jerusalem, Israel

Search for other papers by Isaak Lapides in
Current site
Google Scholar
PubMed
Close
,
Mikhail Borisover Institute of Soil, Water and Environmental Sciences, The Volcani Center, Agricultural Research Organization, POB 6, 50250, Bet Dagan, Israel

Search for other papers by Mikhail Borisover in
Current site
Google Scholar
PubMed
Close
, and
Shmuel Yariv Institute of Chemistry, The Hebrew University of Jerusalem, Campus Edmund Y. Safra, 91904, Jerusalem, Israel

Search for other papers by Shmuel Yariv in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Na-montmorillonite (Na-MONT) was loaded with hexadecyltrimethylammonium cations (HDTMA) by replacing 41 and 90% of the exchangeable Na with HDTMA, labeled OC-41 and OC-90, respectively. Na-MONT, OC-41, and OC-90 were heated in air up to 900 °C. Unheated and thermally treated organoclays heated at 150, 250, 360, and 420 °C are used in our laboratory as sorbents of different hazardous organic compounds from waste water. In order to get a better knowledge about the composition and nature of the thermally treated organoclays Na-MONT and the two organo-clays were studied by thermogravimetry (TG) in air and under nitrogen. Carbon and hydrogen contents in each of the thermal treated sample were determined and their infrared spectra were recorded. The present results showed that at 150 °C both organoclays lost water but not intercalated HDTMA cations. At 250 °C, many HDTMA cations persisted in OC-41, but in OC-90 significant part of the cations were air-oxidized into H2O and CO2 and the residual carbon formed charcoal. After heating both samples at 360 °C charcoal was present in both organo clays. This charcoal persisted at 420 °C but was gradually oxidized by air with further rise in temperature. TG runs under nitrogen showed stepwise degradation corresponding to interlayer water desorption followed by decomposition of the organic compound, volatilization of small fragments and condensation of non-volatile fragments into quasi-charcoal. After dehydroxylation of the clay the last stages of organic matter pyrolysis and volatilization occurred.

  • 1. Jordan JW . Organophilic clay-base thickeners. In: Proceedings of 10th National Conference on Clays and Clay Mineral, vol 10. Oxford: Pergamon; 1963. p. 299308.

    • Search Google Scholar
    • Export Citation
  • 2. Lagaly, G. Interaction of alkylamines with different types of layered compounds. Solid State Ion. 1986;22:4351. .

  • 3. Bergaya, F, Lagaly, G. Surface modification of clay minerals. Appl Clay Sci. 2001;19:13. .

  • 4. Ruiz-Hitzky, E, Van Meerbeek, A. Clay mineral and organoclay-polymers nanocomposites Bergaya, F, Theng, BKG, Lagaly, G, eds. Handbook of clay science. Amsterdam: Elsevier; 2006 583621. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 5. Murray, HH. Traditional and new applications for kaolin, smectite, and palygorskite: a general overview. Appl Clay Sci. 2000;17:207221. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 6. Churchman, GJ, Gates, WP, Theng, BKG, Yuan, G. Clays and clay minerals for pollution control Bergaya, F, Theng, BKG, Lagaly, G, eds. Handbook of clay science. Amsterdam: Elsevier; 2006 625675. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7. Adebajo, MO, Frost, RL, Kloprogge, JT, Carmody, O. Porous materials for oil spill cleanup: a review of synthesis and absorbing properties. J Porous Mater. 2003;10:159170. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8. Ray, SS, Okamoto, M. Polymer/layered silicate nanocomposites: a review from preparation to processing. Prog Polym Sci. 2003;28:15391641. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 9. Vianna, MMGR, Dweck, J, Quina, FH, Carvalho, FMS, Nascimento, CAO. Toluene and naphthalene sorption by iron oxide/cly composites. Part II. Sorption experiments. J Therm Anal Calorim. 2010;101:887892. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10. Borisover M , Bukhanovsky N, Lapides I, Yariv S. Thermal treatment of organoclays: effect on the aqueous sorption of nitrobenzene on n-hexadecyltrimethyl ammonium montmorillonite. Appl Surf Sci. 2009. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11. Giese, RF, van Oss, CJ. Organophilicity and hydrophobicity of organoclays Yariv, S, Cross, H, eds. Organo-clay complexes and interactions. New York: Marcel Dekker; 2002 175191.

    • Search Google Scholar
    • Export Citation
  • 12. Burstein, F, Borisover, M, Lapides, S, Yariv, S. Secondary adsorption on nitrobenzene and m-nitrophenol by hexadecyltrimethylammonium-montmorillonite: thermo-XRD-analysis. J Therm Anal Calorim. 2008;92:3542. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13. Borisover, M, Gerstl, Z, Burshtein, F, Yariv, S, Mingelgrin, U. Organic sorbate-organoclay interactions in aqueous and hydrophobic environments: sorbate-water competition. Environ Sci Technol. 2008;42:72017206. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 14. Green-Kelly, R. The montmorillonite minerals (smectites) Mackenzie, RC, eds. The differential thermal investigation of clays. London: Mineralogical Society (Clay Minerals Group); 1957 140164.

    • Search Google Scholar
    • Export Citation
  • 15. Ovadyahu, D, Lapides, I, Yariv, S. Thermal analysis of tributylammonium montmorillonite and Laponite. J Therm Anal Calorim. 2007;87:125134. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 16. Langier-Kuzniarowa, A. Thermal analysis of organo-clay complexes Yariv, S, Cross, H, eds. Organo-clay complexes and interactions. New York: Marcel Dekker; 2002 273344.

    • Search Google Scholar
    • Export Citation
  • 17. Yariv, S. Differential thermal analysis (DTA) in the study of thermal reactions of organo-clay complexes Ikan, R, eds. Natural and laboratory simulated thermal geochemical processes. Dordrecht: Kluwer Academic Publishers; 2003 253296.

    • Search Google Scholar
    • Export Citation
  • 18. Yariv, S. The role of charcoal on DTA curves of organoclay complexes: an overview. Appl Clay Sci. 2004;24:225236. .

  • 19. Yermiyahu, Z, Landau, A, Zaban, A, Lapides, I, Yariv, S. Monoionic montmorillonites treated with Congo-red: differential thermal analysis. J Therm Anal Calorim. 2003;72:431441. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 20. Yermiyahu, Z, Lapides, I, Yariv, S. Thermo-XRD-analysis of montmorillonite treated with protonated Congo-red: curve fitting. Appl Clay Sci. 2005;30:3341. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 21. Sonobe, N, Kyotani, T, Hishyama, Y, Shiraishi, M, Tomita, A. Formation of highly oriented graphite from poly (acrilonitrile) prepared between the lamellae of montmorillonite. J Phys Chem. 1988;92:70297034. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 22. Sonobe, N, Kyotani, T, Tomita, A. Carbonization of polyacrilonitrile in a two dimensional space between montmorillonite lamellae. Carbon. 1988;26:573578. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 23. Sonobe, N, Kyotani, T, Tomita, A. Carbonization of poly(furfuryl alcohol) and poly(vinil acetate) prepared between the lamellae of montmorillonite. Carbon. 1990;28:483488. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 24. Sonobe, N, Kyotani, T, Tomita, A. Formation of graphite thin film from poly(furfuryl alcohol) and poly(vinil acetate) prepared between the lamellae of montmorillonite. Carbon. 1991;29:6167. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 25. He, H, Ding, Z, Zhu, J, Yuan, P, Xi, Y, Yang, D, Frost, RL. Thermal characterization of surfactant-modified montmorillonite. Clays Clay Min. 2005;53:287293. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 26. Yermiyahu, Z, Kogan, A, Lapides, I, Pelly, I, Yariv, S. Thermal study of naphthylammonium- and naphthylazonaphthylammonium-montmorillonite XRD and DTA. J Therm Anal Calorim. 2008;91:125135. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 27. Ni, R, Huang, Y, Yao, C. Thermogravimetric analysis of organoclays intercalated with the Gemini surfactants. J Therm Anal Calorim. 2009;96:943947. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 28. Lu, L, Cai, J, Frost, RL. Desorption of stearic acid uoin surfactant adsorbed montmorillonite. J Therm Anal Calorim. 2010;100:141144. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 29. Dweck, J. Qualitative and quantitative characterization of Brazilian natural and organophilic clays by thermal analysis. J Therm Anal Calorim. 2008;92:129135. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 30. Jordan, JW. Alteration of the properties of bentonite by reaction with amines. Mineral Mag. 1949;28:598605. .

  • 31. Gao, Z, Xie, W, Hwu, JM, Wells, L, Pan, WP. The characterization of organic modified montmorillonite and its filled pmma nanocomposite. J Therm Anal Calorim. 2001;64:467475. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 32. Xie, W, Gao, Z, Pan, WP, Hunter, D, Singh, A, Vala, R. Thermal degradation chemistry of alkyl quaternary ammonium montmorillonite. Chem Mater. 2001;13:29792990. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 33. Xi, Y, Martens, W, He, H, Frost, RL. Thermogravimetric analysis of organoclays intercalated with the surfactant octadecyltrimethylammonium. J Therm Anal Calorim. 2005;81:9197. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 34. Cervantes-Uc, JM, Cauich-Rodriguez, JV, Vazquez-Torres, H, Grafias-Mesias, LF, Paul, DR. Thermal degradation of commercially available organoclays studied by TGA-FTIR. Thermochim Acta. 2007;457:92102. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 35. Tiwari, RR, Khilar, KC, Natarajan, U. Synthesis and characterization of novel montmorillonites. Appl Clay Sci. 2008;38:203208. .

  • 36. Onal, M, Sarikaya, Y. Thermal analysis of some organoclays. J Therm Anal Calorim. 2008;91:261265. .

  • 37. Yariv, S. Combined DTA-mass spectrometry of organo-clay complexes. J Therm Anal Calorim. 1990;36:19531961. .

  • 38. Heller Kallai, L, Yariv, S. Swelling of montmorillonite containing coordination complexes of amines with transition metal cations. J Colloid Interface Sci. 1981;79:479485. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 39. Yariv, S. Wettability of clay minerals Schrader, ME, Loeb, G, eds. Modern approach to wettability. New York: Plenum Press; 1992 279326.

    • Search Google Scholar
    • Export Citation
  • 40. Yariv, S. The effect of tetrahedral substitution of Si by Al on the surface acidity of the oxygen plane of clay minerals. Int Rev Phys Chem. 1992;11:345375. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 41. Newman, ACD, Brown, G. The chemical constitution of clays Newman, ACD, eds. Chemistry and composition of clays and clay minerals. Mineralogical society monograph no. 6. London: Longman Scietific & Technical; 1987 1128.

    • Search Google Scholar
    • Export Citation
  • 42. Rao, CNR. Chemical applications of infrared spectroscopy. New York: Academic Press; 1963 125281.

  • 43. Ganguly, S, Dana, K, Ghatak, S. Thermogravimetric study of n-alkylammonium-intercalated montmorillonites of different cation exchange capacity. J Therm Anal Calorim. 2010;100:7178. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Collapse
  • Expand

To see the editorial board, please visit the website of Springer Nature.

Manuscript Submission: HERE

For subscription options, please visit the website of Springer Nature.

Journal of Thermal Analysis and Calorimetry
Language English
Size A4
Year of
Foundation
1969
Volumes
per Year
1
Issues
per Year
24
Founder Akadémiai Kiadó
Founder's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Publisher Akadémiai Kiadó
Springer Nature Switzerland AG
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
CH-6330 Cham, Switzerland Gewerbestrasse 11.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 1388-6150 (Print)
ISSN 1588-2926 (Online)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Mar 2024 14 0 0
Apr 2024 43 0 0
May 2024 6 0 0
Jun 2024 13 0 0
Jul 2024 44 0 0
Aug 2024 32 0 0
Sep 2024 13 0 0