Author: Roger Blaine1
View More View Less
  • 1 5516 SW Willow Avenue, Corvallis, OR, 97333, USA
Restricted access

Abstract

No reference materials are currently available to study thermoanalytical kinetic methods, apparatus, or software. The ASTM International Committee E27 on Hazard Potential of Chemicals seeks to identify possible calorimetric reference materials for evaluating kinetic parameters, including activation energy (E), log pre-exponential factor (log Z), and reaction orders (m and n), as well as reaction enthalpy (H). Six candidate materials are examined including di-tertiary-butyl peroxide (DTBP), trityl azide, azobenzene, azobisisobutyronitrile (ABIN), cumene hydroperoxide (CHP), and phenytetrazolthiol. No single material appears to meet all needs. The merits and applicability of each candidate are discussed and recommended kinetic reference values are presented.

  • 1. International Standards Organization, Standard ISO16949. Quality management systems—particular requirements for the application of ISO 9001:2000 for automotive production and relevant service parts organizations.

    • Search Google Scholar
    • Export Citation
  • 2. American Society for Testing and Materials (ASTM International), Test method E1860, Method for elapsed time calibration of thermal analyzers, Annual book of ASTM standards, vol. 14.02.

    • Search Google Scholar
    • Export Citation
  • 3. American Society for Testing and Materials (ASTM International), Test method E967, Method for temperature calibration of differential scanning calorimeters and differential thermal analyzers, Annual book of ASTM standards, vol. 14.02.

    • Search Google Scholar
    • Export Citation
  • 4. American Society for Testing and Materials (ASTM International), Test method E968, Practice for heat flow calibration of differential scanning calorimeters, Annual book of ASTM standards, vol. 14.02.

    • Search Google Scholar
    • Export Citation
  • 5. Ozawa, T. Kinetic analysis of derivative curves in thermal analysis. Therm Anal Calorim. 1970;2:301324 .

  • 6. Flynn, JH, Wall, LA. A quick, direct method for the determination of activation energy by thermogravimetric data. Polym Lett 1966 4:323328 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7. American Society for Testing and Materials (ASTM International), Test method E698, Method for Arrhenius kinetic constants for thermally unstable materials using differential scanning calorimetry and the Flynn/Wall/Ozawa method, Annual book of ASTM standards, vol. 14.02.

    • Search Google Scholar
    • Export Citation
  • 8. Borchardt, HJ, Daniels, F. The application of differential thermal analysis to the study of reaction kinetics. J Am Chem Soc 1957 79:4146 .

  • 9. American Society for Testing and Materials (ASTM International), Test method E2041, Method for estimating kinetic parameters by differential scanning calorimetry using the Borchardt and Daniels method, Annual book of ASTM standards, vol. 14.02.

    • Search Google Scholar
    • Export Citation
  • 10. Sestak, J. Study of the kinetics of the mechanism of solid-solid reactions at increasing temperature. Thermochim Acta. 1971;3:112 .

  • 11. Sbirrazzuoli, N, Drunel, D, Elegant, L. Different kinetic equation analysis. J Therm Anal 1992 39:15091524.

  • 12. American Society for Testing and Materials (ASTM International), Test method E2070, Method for kinetic parameters by differential scanning calorimetry using isothermal methods, Annual book of ASTM standards, vol. 14.02.

    • Search Google Scholar
    • Export Citation
  • 13. Vyazovkin, S. A unified approach to kinetic processing of nonisothermal data. Int J Chem Kinet. 1996;28:95101 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 14. American Society for Testing and Materials (ASTM International), Test method E1877, Practice for calculating thermal endurance of materials from thermogravimetric decomposition data, Annual book of ASTM standards, vol. 14.02.

    • Search Google Scholar
    • Export Citation
  • 15. Nikolaev, AV, Loginenko, VA, Gorbastchev, VM. Special features of the compensation effect in non-isothermal kinetics of solid phase reactions. J Therm Anal 1974 6:473477 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 16. Garn, PD. An examination of the kinetic compensation effect. J Therm Anal. 1975;7:475478 .

  • 17. Brown, ME, Mciejewski, M, Vyazovkin, S, Nomen, R, Sempere, J, Burnham, A, Opfermann, J, Strey, R, Anderson, HL, Kemmler, A, Keuleers, R, Hanssens, JJ, Desseyn, HO, Li, C-R, Tang, TB, Roduit, B, Malek, J, Mitsuhashi, T. Computational aspects of kinetic analysis Part A; The ICTAC kinetics project—Data, methods and results. Thermochim Acta 2000 355:125143 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 18. Duswalt, AA. The practice of obtaining kinetic data by differential scanning calorimetry. Thermochim Acta. 1974;8:5768 .

  • 19. National Fire Protection Association, Standard 704, Standard system for the identification of the hazards of materials for emergency response.

    • Search Google Scholar
    • Export Citation
  • 20. American Society for Testing and Materials (ASTM International), Research report E27-1002 for standard E698; 2000.

  • 21. American Society for Testing and Materials (ASTM International), Research report E37-1028 for standard E2041; 2002.

  • 22. Cammenga, HK, Epple, M. Basic principles of thermoanalytical techniques and their applications in preparation chemistry. Angew Chem Int Ed Engl 1995 34:11711187 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 23. Eckardt, N, Flammersheim, HJ, Cammenga, HK. The cis-trans isomerization of azobenzene in the molten state. J Therm Anal 1998 52:177185 .

  • 24. Duh, Y-S, Kao, C-S, Lee, C, Yu, SW. Runaway hazard assessment of cumene hydroperoxide from the cumene oxidation process. Trans Inst Chem Eng 1997 75:7378 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 25. Chervin S , Bodman GT. Phenomenon of autocatalysis in decomposition of energetic chemicals. Proceedings of 27th Conference of North American Thermal Analysis Society. 1999;125-9.

    • Search Google Scholar
    • Export Citation
  • 26. American Society for Testing and Materials (ASTM International), Research report E37-1029 for standard E2070; 2003.

  • 27. American Society for Testing and Materials (ASTM International), Work item WK27880, Practice for evaluation of methods for kinetic parameters by thermal analysis, 2010.

  • 28. Yasutake, H 1991 J Ind Exp Soc Jpn 52:350.

  • 29. Wrabetz, K, Wong, J. Investigation of the thermal degradation of bi-tertiary butyl-peroxide in the capillary column of a gas chromatograph. Fres Zeit Anal Chem 1987 329:487 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 30. Torfs, JCM, Leen, D, Dorrepaal, AJ, Heijens, JC. Determination of Arrhenius kinetic constants by differential scanning calorimetry. Anal Chem 1984 56:2863 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 31. Gimzewski, E, Audley, G. Thermal hazards: calculating adiabatic behavior from DSC data. Thermochim Acta 1993 214:129140 .

  • 32. MacNeil, DD, Christensen, L, Landucci, J, Paulsen, JM, Dahn, JR. An autocatalytic mechanism for the reaction of LixCoO2 in electrolyte at elevated temperature. J Electrochem Soc 2000 147:1658 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 33. Oxley, JC, Smith, JL, Rogers, E, Ye, W, Aradi, AA, Henly, TJ. Fuel combustion additives; A study of their thermal stabilities and decomposition pathways. Energy Fuels 2000 14:12521264 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 34. MacNeil, DD, Trussler, S, Fortier, H, Dahn, JR. A novel hertic differential scanning calorimeter sample crucible. Thermochim Acta 2002 386:153160 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 35. Aldeeb, AA, Rogers, WJ, Mannan, MS. Theoretical and experimental methods for the evaluation of reactive chemical hazards. Trans Inst Chem Eng 2002 80:141149.

    • Search Google Scholar
    • Export Citation
  • 36. Hofelich, TC, Frurip, DJ, Powers, JB. The determination of compatibility via thermal analysis and mathematical modeling. Process Saf Prog 1994 13:227233 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 37. Townsend, DI, Tou, JC. Thermal hazard evaluation by an accelerating rate calorimeter. Thermochim Acta 1980 37:130 .

  • 38. Whiting, LF, LaBean, MS, Eadie, SS. Evaluation of a capillary tube sample container for differential scanning calorimetry. Thermochim Acta 1988 136:231245 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 39. Grewer, T Thermal hazards of chemical reactions 1994 4 Elsevier New York.

  • 40. Ball, ER, Rust, FF, Vaugh, WE. Decomposition of di-t-alkyl peroxides. IV. Decomposition of pure liquid peroxide. J Am Chem Soc 1950 72:337338 .

  • 41. Murawaski, J, Roberts, JS, Szwarc, M. Kinetics of the thermal decomposition of di-t-butyl peroxide. J Chem Phys 1951 19:698704 .

  • 42. Raley, JH, Rust, FF, Vaughan, WE. Decomposition of di-t-alkyl peroxides. I. Kinetics. J Am Chem Soc 1948 70:8894 .

  • 43. Raley, JH, Rust, FF, Vaughan, WE. Some free radical reactions of hydrogen chloride. J Am Chem Soc 1948 70:27672770 .

  • 44. Birss, FW, Danby, CJ, Hinshelwood, CN. The thermal dissociation of tertiary butyl peroxide in presence of nitric acid. Proc R Soc Lond A 1957 239:154164 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 45. Batt, L, Benson, SW. Pyrolysis of di-tertiary butyl peroxide: temperature gradients and chain contribution to the rate. J Chem Phys 1962 36:895901 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 46. Batt, L, Benson, SW. Erratum: Pyrolysis of di-tertiary butyl peroxide: Temperature gradients and chain contribution to the rate. J Chem Phys 1963 38:30313032 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 47. Jaquiss, MT, Roberts, JS, Szwarc, M. The reactions of methyl radicals with acetone. J Am Chem Soc 1952 74:60056007 .

  • 48. Pritchard GO , Pritchard HO, Trotman-Dickenson AF. The reactions of methyl radicals with acetone, diethyl ketone, and di-tert-butyl peroxide. J Chem Soc. 1954; 14258.

    • Search Google Scholar
    • Export Citation
  • 49. Blake, AR, Kutschke, KO. The reaction of methyl radicals with formaldehyde. Can J Chem 1959 37:14621468 .

  • 50. Shaw, DH. Thermal decomposition of di-tert-butyl peroxide at high pressure. Can J Chem. 1968;46:27212724 .

  • 51. Lossing, FP, Tickner, AW. Free radicals by mass spectrometry. I. The measurement of methyl radical concentration. J Chem Phys 1952 20:907914 .

  • 52. Mulcahy, MFR, Williams, DJ. A stirred-flow reactor for investigating the kinetics of gaseous reactions: application to the decomposition of di-t-butyl peroxide. Aust J Chem 1961 14:534544 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 53. Iizuka, Y, Surianarayanan, M. Comprehensive kinetic model for adiabatic decomposition of di-tert-butyl peroxide using batch CAD. Ind Eng Chem Res 2003 42:29872995 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 54. Wang, YW, Duh, YS, Shu, CM. Evaluation of adiabatic runaway reaction and vent sizing for emergency relief from DSC. J Therm Anal Calorim 2006 85:225234 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 55. Kersten RJA , Boers MN, Stork MM, Vissers C. Results of a round-robin with di-tertiary-butyl peroxide in various adiabatic equipment for assessment of runaway reaction hazards. J Loss Prev Process Ind. 2005; 18.

    • Search Google Scholar
    • Export Citation
  • 56. Duh, Y, Wu, XH, Kao, C. Hazard ratings for organic peroxides. Process Saf Prog 2008 27:8999 .

  • 57. Hou, HY, Laio, TS, Duh, YS, Shu, CM. Thermal hazard studies for dicumyl peroxide by DSC and TAM. J Therm Anal Calorim 2006 83:167171 .

  • 58. Wang, Q, Rogers, WJ, Mannan, MS. Thermal risk assessment and rankings for reaction hazards in process safety. J Therm Anal Calorim 2009 98:225233 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 59. Li, X, Wang, X, Koseki, H. Study of thermal decomposition characteristics of AIBN. J Hazard Mater 2008 159:1218.

  • 60. VanHook, JP, Tobolsky, AV. The thermal decomposition of 2, 2′-azo-bis-isobutyonitrile. J Am Chem Soc 1958 80:779782 .

  • 61. Neag, CM, Provder, T, Holsworth, RM. Statistical evaluation of non-isothermal decomposition kinetics analysis method for AIBN. J Therm Anal 1987 32:18331842 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 62. Barrett, KEJ. Determination of rates of thermal decomposition of polymerization initiators with a differential scanning calorimeter. J Appl Polym Sci. 1967;11:16171626 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 63. Wolf, E, Cammenga, HK. Thermodynamic and kinetic investigation of the thermal isomerization of cis-azobenzene. Z Phys Chem (Frankfurt) 1977 107:2138 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 64. Ando, T , Fuzumeta Y, Morisaki S. DSC Date for reactive chemical substances. Safety Document of the Japan Research Institute of Industrial Safety, vol. RIIS-SD-87.

    • Search Google Scholar
    • Export Citation
  • 65. Hattori, K, Tanaka, Y, Suzuri, H, Ikawa, T, Kubota, H. Kinetics of liquid phase oxidation of cumene in bubble column. J Chem Eng Jpn 1970 3:7278 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 66. Duh, Y-S, Kao, C-S, Hwang, H-H, Lee, WW-L. Thermal decomposition kinetics of cumene hydroperoxide. Trans Inst Chem Eng 1998 76:271276.

    • Search Google Scholar
    • Export Citation
  • 67. Miyake, A, Nomura, K, Mizuta, Y, Sumino, M. Thermal decomposition analysis of organic peroxides using model-free simulation. J Therm Anal Calorim 2008 92:407411 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 68. Miyake, A, O’hama, Y. Thermal hazard analysis of cumene hydroperoxide using calorimetry and spectroscopy. J Therm Anal Calorim 2008 93:5357 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 69. DeSomma, I, Andreozzi, R, Canterino, M, Caprio, V. Thermal decomposition of cumene hydroperoxide: chemical and kinetic characterization. AIChE J 2008 54:15791584 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 70. Hou, H-Y, Duh, Y-S, Lee, W-L, Shu, C-M. Hazard evaluation for redox systems of cumene hydroperoxide mixed with inorganic alkaline solutions. J Therm Anal Calorim 2009 95:5415459 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 71. Chen, Y-L, Chou, Y-P, Hou H-Y, IY-P, Shu, C-M. Reaction hazard analysis for cumene hydroperoxide with sodium hydroxide or sulfuric acid. J Therm Anal Calorim 2009 95:535539 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 72. American Society for Testing and Materials (ASTM International), Test method E537, Method for assessing the thermal stability of chemicals by methods of thermal analysis, Annual book of ASTM standards, vol. 14.02.

  • 73. American Society for Testing and Materials (ASTM International), Research report E27-1003 for standard E537; 2000.