View More View Less
  • 1 Biotechnical Faculty, Department of Food Science and Technology, University of Ljubljana, Ljubljana, Slovenia
  • | 2 CipKeBiP, The Centre of Excellence for Integrated Approaches in Chemistry and Biology of Proteins, Jamova 39, Ljubljana, Slovenia
Restricted access

Abstract

The phase behaviour and phase stability of mixed liposomes prepared from diether polar lipids isolated from thermophilic Archaea and from conventional diester dipalymitoyl-l-α-phosphatidylcholine (DPPC) at different molar ratios were investigated by differential scanning calorimetry. The permeability of these mixed liposomes was investigated as a function of temperature, by measuring the fluorescence emission intensity for the release of calcein in the temperature range from 20 to 98 °C. Our data show that diether polar lipids isolated from hyperthermophilic Archaea can form mixed liposomes with synthetic α-DPPC. Liposomes prepared from pure archaeal lipids do not show the characteristic gel-to-liquid crystalline phase transition characteristics of DPPC liposomes in the temperature range from 0 to 100 °C. In the presence of 5 mol% archaeal lipids in mixed α-DPPC liposomes, the temperature of the phase transition decreases and the broadness of the peak increases, although the enthalpy change (ΔH) of the phase transition is not significantly influenced. At molar ratios of archaeal lipids greater than 50 mol% in these mixed liposomes, the typical gel-to-liquid crystalline phase transition disappears, which indicates that the lipids are predominantly in the liquid crystalline state. At ratios of archaeal lipids greater than 50 mol% in these mixed liposomes, their permeability for anionic calcein is the same as for liposomes made from 100 mol% archaeal lipids, across the whole temperature range.

  • 1. Koga, Y, Morii, H. Special methods for the analysis of ether lipid structure and metabolism in Archaea. Anal Biochem. 2006;348:114. .

  • 2. Morii, H, Yagi, H, Akutsu, H, Nomura, N, Sako, Y, Koga, Y. A novel phosphoglycolipid archaetidyl(glucosyl)inositol with two sesterterpanyl chains from the aerobic hyperthermophilic archaeon Aeropyrum pernix K1. Biochim Biophys Acta Mol Cell Biol Lipids. 1999;1436:426436.

    • Search Google Scholar
    • Export Citation
  • 3. Gmajner, D, Ota, A, Šentjurc, M, Poklar Ulrih, N. Stability of diether C25,25 liposomes from the hyperthermophilic Archaeon Aeropyrum pernix K1. Chem Phys Lipids. 2011;164:236245. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 4. Sprott, GD, Dicaire, CJ, Cote, JP, Whitfield, DM. Adjuvant potential of archaeal synthetic glycolipid mimetics critically depends on the glyco head-group structure. Glycobiology. 2008;18:559565. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 5. Bligh, EG, Dyer, WJA. Rapid method of total lipid extraction and purification. Can J Biochem Physiol. 1959;37:911917. .

  • 6. Poklar, N, Fritz, J, Macek, P, Vesnaver, G, Chalikian, TV. Interaction of the pore-forming protein equinatoxin II with model lipid membranes: a calorimetric and spectroscopic study. Biochemistry. 1999;38:1499915008. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7. Gambacorta, A, Gliozzi, A, Rosa, M. Archaeal lipids and their biotechnological applications. World J Microbiol Biotechnol. 1995;11:115131. .

  • 8. Bartucci, R, Gambacorta, A, Gliozzi, A, Marsh, D, Sportelli, L. Bipolar tetraether lipids: chain flexibility and membrane polarity gradients from spin-label electron-spin resonance. Biochemistry. 2005;44:1501715023. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 9. Blume, A. Apparent molar-heat capacities of phospholipids in aqueous dispersion. Effects of chain length and head-group structure. Biochemistry. 1983;22:54365442. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10. McElhaney, RN. Differential scanning calorimetric studies of lipid–protein interactions in model membrane systems. Biochim Biophys Acta. 1986;864:361421.

    • Search Google Scholar
    • Export Citation
  • 11. Koga, Y, Morii, H. Recent advances in structural research on ether lipids from Archaea, including comparative and physiological aspects. Biosci Biotechnol Biochem. 2005;69:20192034. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 12. Blöcher, D, Gutermann, R, Henkel, B, Ring, K. Physicochemical characterization of tetraether lipids from Thermoplasma acidophilum. Differential scanning calorimetry studies on glycolipids and glycophospholipids. Biochim Biophys Acta. 1984;778:7480. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13. Yamauchi, K, Doi, K, Yoshida, Y, Kinoshita, M. Archaebacterial lipids: highly proton-impermeable membranes from 1,2-diphytanyl-sn-glycero-3-phosphocoline. Biochim Biophys Acta. 1993;1146:178182. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 14. Gliozzi, A, Paoli, G, DeRosa, M, Gambacorta, A. Effect of isoprenoid cyclization on the transition temperature of lipids in thermophilic archaebacteria. Biochim Biophys Acta. 1983;735:234242. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15. Chong, PLG, Ravindra, R, Khurana, M, English, V, Winter, R. Pressure perturbation and differential scanning calorimetric studies of bipolar tetraether liposomes derived from the thermoacidophilic archaeon Sulfolobus acidocaldarius. Biophys J. 2005;89:18411849. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 16. Chong, PLG, Sulc, M, Winter, R. Compressibilities and volume fluctuations of archaeal tetrameter liposomes. Biophys J. 2010;99:33193326. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 17. Chong, PL, Choate, D. Calorimetric studies of the effects of cholesterol on the phase transition of C(18):C(10) phosphatidylcholine. Biophys J. 1989;55:551556. .

    • Crossref
    • Search Google Scholar
    • Export Citation

Manuscript Submission: HERE

  • Impact Factor (2019): 2.731
  • Scimago Journal Rank (2019): 0.415
  • SJR Hirsch-Index (2019): 87
  • SJR Quartile Score (2019): Q3 Condensed Matter Physics
  • SJR Quartile Score (2019): Q3 Physical and Theoretical Chemistry
  • Impact Factor (2018): 2.471
  • Scimago Journal Rank (2018): 0.634
  • SJR Hirsch-Index (2018): 78
  • SJR Quartile Score (2018): Q2 Condensed Matter Physics
  • SJR Quartile Score (2018): Q2 Physical and Theoretical Chemistry

For subscription options, please visit the website of Springer.

Journal of Thermal Analysis and Calorimetry
Language English
Size A4
Year of
Foundation
1969
Volumes
per Year
4
Issues
per Year
24
Founder Akadémiai Kiadó
Founder's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Publisher Akadémiai Kiadó
Springer Nature Switzerland AG
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
CH-6330 Cham, Switzerland Gewerbestrasse 11.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 1388-6150 (Print)
ISSN 1588-2926 (Online)