View More View Less
  • 1 Division of Molecular and Nanomaterials, Department of Chemistry, Katholieke Universiteit Leuven, Celestijnenlaan 200F, 3001, Heverlee, Belgium
  • | 2 DSM Research, P.O. Box 18, 6160 MD, Geleen, The Netherlands
  • | 3 Universidad del País Vasco-Euskal Herriko Unibertsitatea, EUITMOP, Beurko s/n, 48902, Barakaldo, Spain
  • | 4 SciTe B.V., Ridder Vosstraat 6, 6162 AX, Geleen, The Netherlands
Restricted access

Abstract

In samples containing a volatile phase, quite often the evaporation of the volatile substance during heating causes appreciable curvature of the DSC heat flow rate signal as function of temperature, making it difficult to quantify thermal transitions and reorganization phenomena occurring in the same temperature range. This is the case for e.g. polyamide–water, polyamide–alcohol, and polypropylene–water systems, thus complicating the study of polymer crystallization, melting, and metastability by DSC. In this study, maleic anhydride-grafted polypropylene particles of sub-micrometer diameters dispersed in water are discussed. These samples show, upon cooling from the melt, different degrees of extra supercooling in crystallization and several phenomena in the subsequent heating, like reorganization of a crystalline phase into another one, perfecting of crystallites, and melting. All these phenomena are difficult to analyze quantitatively due to the mentioned curvature of the DSC trace. In this article two methods, the “Reference” and “Extrapolation from the melt” methods, are described to correct for the influence of evaporation on the DSC heat flow rate signal and for the baseline signal, enabling the discussion of the transitions by way of the excess heat flow rate as function of temperature.

  • 1. Frensch H , Harnschfeger P, Jungnickel BJ. Fractionated crystallization in incompatible polymer blends. In: Utracki LA, Weiss RA, editors. Multiphase polymers: blends and ionomers. Washington: ACS Symposium Series; 1989. p. 101125.

    • Search Google Scholar
    • Export Citation
  • 2. Vonnegut, B. Variation with temperature of the nucleation rate of supercooled liquid tin and water drops. J Colloid Sci. 1948;3: 6 563569. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 3. Turnbull, D. Formation of crystal nuclei in liquid metals. J Appl Phys. 1950;21:10221028. .

  • 4. Cormia, RL, Price, FP, Turnbull, D. Kinetics of crystal nucleation in polyethylene. J Chem Phys. 1962;37: 6 13331340. .

  • 5. Gornick, F, Ross, GS, Frolen, LJ. Crystal nucleation in polyethylene: the droplet experiment. J Polym Sci C Polym Symp. 1967;18:7991. .

  • 6. Koutsky, JA, Walton, AG, Baer, E. Nucleation of polymer droplets. J Appl Phys. 1967;38: 4 18321839. .

  • 7. Groeninckx, G, Vanneste, M, Everaert, V. Crystallization morphological structure and melting of polymer blends Utracki, LA, eds. Polymer blends handbook. New York: Kluwer Academic Publishers; 2003 203294.

    • Search Google Scholar
    • Export Citation
  • 8. Tol RT , Mathot VBF, Reynaers H, Groeninckx G. Relationship between phase morphology and crystallization behavior in crystallizable polymer blends: fractionated crystallization and homogeneous nucleation. In: Harrats C, Thomas S, Groeninckx G, editors. Micro- and nanostructured multiphase polymer blend systems: phase morphology and interfaces. Boca Raton: CRC Press, Taylor and Francis Group; 2006. p. 391420.

    • Search Google Scholar
    • Export Citation
  • 9. Müller, AJ, Balsamo, V, Arnal, ML. Nucleation and crystallization in diblock and triblock copolymers. Adv Polym Sci. 2005;190:163. .

  • 10. Massa, MV, Carvalho, JL, Dalnoki-Veress, K. Direct visualization of homogeneous and heterogeneous crystallization in an ensemble of confined domains of poly(ethylene oxide). Eur Polym J E. 2003;12:111117. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11. Kailas, L, Vasilev, C, Audinot, JN, Migeon, HN, Hobbs, JK. A real-time study of homogeneous nucleation, growth, and phase transformations in nanodroplets of low molecular weight isotactic polypropylene using AFM. Macromolecules. 2007;40:72237230. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 12. Turnbull, D, Fisher, JC. Rate of nucleation in condensed systems. J Chem Phys. 1949;17:7173. .

  • 13. Barham, PJ, Jarvis, DA, Keller, A. A new look at the crystallization of polyethylene. III. Crystallization from the melt at high supercoolings. J Polym Sci Part B Polym Phys. 1982;20: 9 17331748.

    • Search Google Scholar
    • Export Citation
  • 14. Frensch, H, Jungnickel, BJ. Fractionated and self-seeded crystallization in incompatible polymer blends. Plast Rub Comp Proc Appl. 1991;16: 1 510.

    • Search Google Scholar
    • Export Citation
  • 15. Everaert, V, Groeninckx, G, Aerts, L. Fractionated crystallization in immiscible POM/(PS/PPE) blends part 1: effect of blend phase morphology and physical state of the amorphous matrix phase. Polymer. 2000;41: 4 14091428. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 16. Arnal, ML, Müller, AJ, Maiti, P, Hikosaka, M. Nucleation and crystallization of isotactic poly(propylene) droplets in an immiscible polystyrene matrix. Macromol Chem Phys. 2000;201: 17 24932504. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 17. Tol, RT, Mathot, VBF, Groeninckx, G. Confined crystallization phenomena in immiscible polymer blends with dispersed micro- and nanometer sized PA6 droplets, part 2: reactively compatibilized PS/PA6 and (PPE/PS)/PA6 blends. Polymer. 2005;46:383396. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 18. He, Y, Zhu, B, Kai, W, Inoue, Y. Nanoscale-confined and fractional crystallization of poly(ethylene oxide) in the interlamellar region of poly(butylene succinate). Macromolecules. 2004;37: 9 33373345. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19. Massa MV , Dalnoki-Veress K. Homogeneous crystallisation of poly(ethylene oxide) confined to droplets: the dependence of the crystal nucleation rate on length-scale and temperature. Phys Rev Lett. 2004;92(25):Art no. 255509.

    • Search Google Scholar
    • Export Citation
  • 20. Jin, Y, Hilter, A, Baer, E, Masirek, R, Piorkowska, E, Galeski, A. Formation and transformation of smectic polypropylene nanodroplets. J Polym Sci Part B Polym Phys. 2006;44: 13 17951803. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 21. Ibarretxe, J, Groeninckx, G, Bremer, L, Mathot, VBF. Quantitative evaluation of fractionated and homogeneous nucleation of polydisperse distributions of water-dispersed maleic anhydride-grafted-polypropylene micro- and nano-sized droplets. Polymer. 2009;50: 19 45844595. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 22. Müller, AJ, Balsamo, V, Arnal, ML, Jakob, T, Schmalz, H, Abetz, V. Homogeneous nucleation and fractionated crystallization in block copolymers. Macromolecules. 2002;35:30483058. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 23. Reiter G , Castelein G, Sommer JU. Direct visualization of random crystalization and melting in arrays of nanometer-size polymer crystals. Phys Rev Lett. 2001;87(22):Art no 226101.

    • Search Google Scholar
    • Export Citation
  • 24. Ibarretxe Uriguen, J, Bremer, L, Mathot, VBF, Groeninckx, G. Preparation of water-borne dispersions of polyolefins: new systems for the study of homogeneous nucleation of polymers. Polymer. 2004;45:59615968. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 25. Wevers MGM . Full dissolution and crystallization of polyamides in water and other solvents. Doctoral Thesis by the Katholieke Universiteit Leuven. Leuven, Belgium. 2006.

    • Search Google Scholar
    • Export Citation
  • 26. Turnbull, D, Cormia, RL. Kinetics of crystal nucleation in some alkane liquids. J Chem Phys. 1961;34: 3 820831. .

  • 27. Montenegro, R, Landfester, K. Metastable and stable morphologies during crystallization of alkanes in miniemulsion droplets. Langmuir. 2003;19:59966003. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 28. Tanden, A, Landfester, K. Crystallization of poly(ethylene oxide) confined in miniemulsion droplets. Macromolecules. 2003;36:40374041. .

  • 29. Weber, CH, Chiche, A, Krausch, G, Rosenfeldt, S, Ballauff, M, Harnau, L, Göttker-Schnetmann, I, Tong, Q, Mecking, S. Single lamella nanoparticles of polyethylene. Nano Lett. 2007;7: 7 20242029. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 30. Wevers, MGM, Mathot, VBF, Pijpers, TFJ, Goderis, B, Groeninckx, G. Full dissolution and crystallization of polyamide 6 and polyamide 4.6 in water and ethanol Reiter, G, Strobl, GR, eds. Progress in understanding of polymer crystallization. Berlin: Springer; 2007 151168. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 31. Wevers, MGM, Pijpers, TFJ, Mathot, VBF. The way to measure quantitatively full dissolution and crystallization of polyamides in water up to 200 degrees C and above by DSC. Thermochim Acta. 2007;1: 453 6771. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 32. Smith, JM, Van Nes, HC, Abott, M. Introduction to chemical engineering thermodynamics. New York: McGraw-Hill; 1996.

  • 33. Mathot, VBF. Thermal characterization of states of matter Mathot, VBF, eds. Calorimetry and thermal analysis of polymers. Munich, Vienna, New York: Hanser Publishers; 1994 105167.

    • Search Google Scholar
    • Export Citation
  • 34. Mileva, D, Androsch, R, Zhuraviev, E, Schick, C. Temperature of melting of the mesophase of isotactic polypropylene. Macromolecules. 2009;42: 19 72757278. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 35. Pyda M , editor. The ATHAS Data Bank. http://athas.prz.rzeszow.pl.

Manuscript Submission: HERE

  • Impact Factor (2019): 2.731
  • Scimago Journal Rank (2019): 0.415
  • SJR Hirsch-Index (2019): 87
  • SJR Quartile Score (2019): Q3 Condensed Matter Physics
  • SJR Quartile Score (2019): Q3 Physical and Theoretical Chemistry
  • Impact Factor (2018): 2.471
  • Scimago Journal Rank (2018): 0.634
  • SJR Hirsch-Index (2018): 78
  • SJR Quartile Score (2018): Q2 Condensed Matter Physics
  • SJR Quartile Score (2018): Q2 Physical and Theoretical Chemistry

For subscription options, please visit the website of Springer.

Journal of Thermal Analysis and Calorimetry
Language English
Size A4
Year of
Foundation
1969
Volumes
per Year
4
Issues
per Year
24
Founder Akadémiai Kiadó
Founder's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Publisher Akadémiai Kiadó
Springer Nature Switzerland AG
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
CH-6330 Cham, Switzerland Gewerbestrasse 11.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 1388-6150 (Print)
ISSN 1588-2926 (Online)