View More View Less
  • 1 Department of Chemistry, The University of Tennessee, Knoxville, TN, 37996-1600, USA
  • | 2 200 Baltusrol Road, Knoxville, TN, 37934-3707, USA
Restricted access

Abstract

The goal of the thermal analysis experiments is to extract scientifically and technological important information from measurements of “heat.” Unfortunately, there exists no direct heat meter. In fact, the assessment of the quantity heat has a colorful past and, as is a common human trait, the back-integration of successively gained knowledge into the basic teaching is lax, as in all stages of education. Thermal analysis can be taken as a prime example of this problem. A “Methodology of Interpreting Thermal Analysis of Polymers” is described in this report on the example of recent data on poly(butylene terephthalate), PBT, crystallized by slow cooling from the melt. It is shown how the simple temperature-difference or heat-flow rate as a function of sample temperature is converted to calorimetric information. Once calorimetric data are available, the results can be interpreted using modern descriptions of phases, making use of a scheme of phase structures as well as considering molecular motion arguments and phase sizes. Using the three classical types of strong chemical bonding leads to 57 possible condensed phases and two types of transitions (glass and order/disorder transitions) necessary for the description.

  • 1. McNaught AD , Wilkinson A. IUPAC compendium of chemical terminology (the “Gold Book”). Oxford: Blackwell, Scientific; 1997. XML on-line corrected version: http://goldbook.iupac.org 2006, created by Nic M, Jirat J, Kosata B, updates compiled by Jenkins A; ISBN 0-9678550-9-8. doi: .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 2. Wunderlich B . Thermal analysis of polymeric materials. Berlin: Springer; 2005. ISBN 978-3-540-23629-0 (Print) 978-3-540-26360-9 (Online).

    • Search Google Scholar
    • Export Citation
  • 3. Wunderlich B . A science career against all odds. Berlin: Springer; 2010. ISBN 978-3-642-11195-2 (pp. 985-9-86).

  • 4. Barke H-D , Hazari A, Yitbarek S. Misconceptions in chemistry: addressing perceptions in chemical education. Berlin: Springer; 2009. ISBN 978-3-540-70898-3.

    • Search Google Scholar
    • Export Citation
  • 5. Pyda, M, Nowak-Pyda, E, Heeg, J, Huth, H, Minakov, AA, Di Lorenzo, ML, Schick, C, Wunderlich, B 2006 Melting and crystallization of poly(butylene terephthalate) by temperature-modulated and superfast calorimetry. J Polym Sci B 44:13641377 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 6. Merriam Webster’s Collegiate Dictionary, 11th ed. Springfield: Merriam-Webster Inc; 2003. http://www.mw.com/.

  • 7. Boller, A, Jin, Y, Wunderlich, B 1994 Heat capacity measurement by modulated DSC at constant temperature. J Therm Anal 42:307330 .

  • 8. Minakov AA , Schick C. Ultrafast thermal processing and nanocalorimetry at heating and cooling rates up to 1 Mk/s. Rev Sci Inst. 2007;78: 073902-1-10.

    • Search Google Scholar
    • Export Citation
  • 9. Wunderlich, B 2010 Thermodynamic description of condensed phases. J Therm Anal Calorim 102:413424 .

  • 10. Boller, A, Schick, C, Wunderlich, B 1995 Modulated differential scanning calorimetry in the glass transition region. Thermochim Acta 266:97111 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11. Wunderlich, B 1999 A classification of molecules and transitions as recognized by thermal analysis. Thermochim Acta 340 /341 3752 .

  • 12. Chen, W, Wunderlich, B 1999 Nanophase separation of small and large molecules. Macromol Chem Phys 200:283311 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13. Wunderlich, B, Boller, A, Okazaki, I, Kreitmeier, S 1996 Modulated differential scanning calorimetry in the glass transition region, part II. The mathematical treatment of the kinetics of the glass transition. J Therm Anal 47:10131026 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 14. Boller, A, Okazaki, I, Wunderlich, B 1996 Modulated differential scanning calorimetry in the glass transition region, part III. Evaluation of polystyrene and poly(ethylene terephthalate). Thermochim Acta 284:119 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15. Okazaki, I, Wunderlich, B 1996 Modulated differential scanning calorimetry in the glass transition region, part V. Activation energies and relaxation times of poly(ethylene terephthalate)s. J Polym Sci B 34:29412952 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 16. Okazaki, I, Wunderlich, B 1997 Modulated differential scanning calorimetry in the glass transition region, part VI. Model calculations based on poly(ethylene terephthalate). J Therm Anal 49:5770 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 17. Wunderlich, B 2009 Quasi-isothermal temperature-modulated differential scanning calorimetry (TMDSC) for the separation of reversible and irreversible thermodynamic changes in glass transition and melting ranges of flexible macromolecules. Pure Appl Chem 81:19311952 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 18. Wunderlich, B 1962 Motion in polyethylene II. Vibrations in crystalline polyethylene. J Chem Phys 37:12071216 .

  • 19. Pyda, M, Bartkowiak, M, Wunderlich, B 1998 Computation of heat capacities of solids using a general Tarasov equation. J Therm Anal Calorim 52:631656 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 20. Wunderlich, B, Baur, H 1970 Heat capacities of linear high polymers. Fortschr Hochpolymeren Forsch (Adv Polymer Sci) 7:151368.

  • 21. Pyda, M, Nowak-Pyda, E, Mays, J, Wunderlich, B 2004 Heat capacity of poly(butylene terephthalate). J Polym Sci B 42:44014411 .

  • 22. Wunderlich B . The Athas Data Base on heat capacities of polymers. Pure Appl Chem. 1995;67: 10191026. For data via the internet, see http://athas.prz.rzeszow.pl.

    • Search Google Scholar
    • Export Citation
  • 23. Gaur, U, Cao, M-Y, Pan, R, Wunderlich, B 1986 An addition scheme of heat capacities of linear macromolecules. Carbon backbone polymers. J Therm Anal 31:421445 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 24. Pan, R, Cao, M-Y, Wunderlich, B 1986 An addition scheme of heat capacities of linear macromolecules. Part II, backbone-chains that contain other than C-bonds. J Therm Anal 31:13191342 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 25. Loufakis, K, Wunderlich, B 1988 Computation of heat capacity of liquid macromolecules based on a statistical mechanical approximation. J Phys Chem 92:42054209 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 26. Pyda, M, Wunderlich, B 1999 Computation of heat capacities of liquid polymers. Macromolecules 32:20442050 .

  • 27. Sumpter, BG, Noid, DW, Liang, GL, Wunderlich, B 1994 Atomistic dynamics of macromolecular crystals. Adv Polymer Sci 116:2772 .

  • 28. Cheng, SZD, Pan, R, Wunderlich, B 1988 Thermal analysis of poly(butylene terephthalate), its heat capacity, rigid-amorphous fraction and transition behavior. Makromol Chem 189:24432458 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 29. Wunderlich, B 1958 Theory of cold crystallization of high polymers. J Chem Phys 29:13951404 .

  • 30. Wunderlich, B 2003 Reversible crystallization and the rigid-amorphous phase in semicrystalline macromolecules. Progr Polym Sci 28 3 383450 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 31. Wunderlich B . The influence of liquid to solid transitions on the changes of macromolecular phases from disorder to order. Thermochim Acta. 2010. doi: ; in print.

    • Crossref
    • Search Google Scholar
    • Export Citation

Manuscript Submission: HERE

  • Impact Factor (2019): 2.731
  • Scimago Journal Rank (2019): 0.415
  • SJR Hirsch-Index (2019): 87
  • SJR Quartile Score (2019): Q3 Condensed Matter Physics
  • SJR Quartile Score (2019): Q3 Physical and Theoretical Chemistry
  • Impact Factor (2018): 2.471
  • Scimago Journal Rank (2018): 0.634
  • SJR Hirsch-Index (2018): 78
  • SJR Quartile Score (2018): Q2 Condensed Matter Physics
  • SJR Quartile Score (2018): Q2 Physical and Theoretical Chemistry

For subscription options, please visit the website of Springer.

Journal of Thermal Analysis and Calorimetry
Language English
Size A4
Year of
Foundation
1969
Volumes
per Year
4
Issues
per Year
24
Founder Akadémiai Kiadó
Founder's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Publisher Akadémiai Kiadó
Springer Nature Switzerland AG
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
CH-6330 Cham, Switzerland Gewerbestrasse 11.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 1388-6150 (Print)
ISSN 1588-2926 (Online)