The adducts [CdX2(L-L)], where X = Cl, Br, I; L-L = 2,2’-bipyridine (bipy) or 2,2′-bipyridine N,N′-dioxide (bipyNO) have been synthesized and characterized by melting points, elemental analysis, thermal analysis, and IR spectroscopy. From calorimetric studies in solution, the standard enthalpies of formation of the adducts and several thermochemical parameters were determined. The mean standard enthalpies of the cadmium-nitrogen and cadmium-oxygen bonds have been estimated.
1. Diesnis, M. The determination of the critical hygrometric state. Ann Chim. 1937;7:5–69.
2. Simpson, PG, Vinciguerra, A, Quagliano, JV. The donor properties of 2, 2′-bipyridine N, N′-dioxide. Inorg Chem. 1963;2:282–286. .
3. Sinha, SP. 2, 2′-Dipyridyl complexes of rare earths. I. Preparation and infrared and some other spectroscopic data. Spectrochim Acta. 1964;20:879–886. .
4. Silva MLCP , Chagas AP, Airoldi C. Heterocyclic N-oxide ligands: a thermochemical study of adducts with zinc, cadmium and mercury chlorides. J Chem Soc Dalton Trans. 1988; 2113–6.
5. Bailey, RD, Pennington, WT. Cadmium(II) halide complexes of pyrazine. Polyhedron. 1997;16: 3 417–422. .
6. Morioka, Y, Nakagawa, I. Far-i.r. reflection spectra and lattice vibrations of cadmium chloride, bromide and iodide crystals. Spectrochim Acta A. 1978;34:5–8. .
7. Simoni, JA, Airoldi, C, Chagas, AP. Themochemistry of dichlorobis(NN-dimethylacetamide)-zinc(II) and dichloro(NN-dimethylacetamide)-cadmium(II) and mercury(II). J Chem Soc. 1980;11:156–158.
8. Ahrland, S, Bjork, NO, Person, I. Metal halide and pseudohalide complexes in dimethylsulfoxide solution. X. Equilibrium and enthalpy measurements on halide systems of zinc(II), cadmium(II) and mercury(II) in 0.1M ammonium perchlorate. Acta Chem Scan A. 1981;35:67–75. .
9. Airoldi, C, Chagas, AP, Namora Filho, M. Thermochemistry of dihalide (diacetamide)zinc(II), cadmium(II) and dihalide bis(diacetamide)-mercury(II). Inorg Chem. 1981;43:89–93.
10. Rath, SC, Das, PB. Thermodynamics of CdCl2 and CdBr2 in aquo-organic solvents from conductance data. Themochim Acta. 1983;60:77–86. .
11. Rath, SC, Das, PB. Thermodynamics of CdCl2 and CdBr2 in mixed solvents from viscosity data. Thermochim Acta. 1983;63:369–375. .
12. Queiroz JC , Airoldi C, Chagas AP. Thermochemical data for adducts of zinc, cadmium and mercury halides with hexamethylphosphoramide. J Chem Soc Dalton Trans. 1985; 1103–5.
13. Queiroz, JC, Airoldi, C, Chagas, AP. A thermochemical study involving adducts MX2. P(C6H5)3O (M=Zn, Cd, Hg; x=Br, I). J Chem Thermodynamics. 1986;18:709–714. .
14. Santos, MRMC, Airoldi, C. Thermochemical study of adducts of urea with zinc, cadmium and mercury: some correlations for urea derivatives. Thermochim Acta. 1988;125:295–305. .
15. Graddon, DP, Khoo, CS. Thermodynamics of metal-ligand bond formation-XXXVI. Formation of complex zinc and cadmium halides in acetonitrile solution. Polyhedron. 1988;7: 21 2129–2133. .
16. Skudlarski, K, Dudek, J, Kapala, J. Thermodynamics of {xCdBr2+(1-x)CdI2}(s) investigated by mass spectrometry. J Chem Thermodynamics. 1989;21:785–788. .
17. Saito, M, Nakajima, M, Hashimoto, S. Enantioselective conjugate addition of thiols to cyclic enones and enals catalyzed by chiral N,N’-dioxide-cadmium iodide complex. Tetrhedron. 2000;56:9589–9594. .
18. Farias, RF, Airoldi, C. Calorimetric study of the adducts CdBr2.nL (n=1 and 2; L=ethyleneurea and propyleneurea). Thermochim Acta. 2002;390:213–215. .
19. Zhao, J, Zhang, Y, Kan, Y, Zhu, L. Theoretical studies on vibracional spectra of some halides of group IIB elements. Spectrochim Acta A. 2004;60:679–688. .
20. UG Silva Jr , Oliveira, OA, Farias, RF. Synthesis, characterization and calorimetric study of zinc group halide adducts with aniline. Thermochim Acta. 2006;450:2–4. .
21. Yu, JH, Ye, L, Bi, MH, Hon, Q, Zhang, X, Xu, JQ. Structural characterization of several cadmium halides with N-donor ligands. Inorg Chim Acta. 2007;360:1987–1994. .
22. Gallagher, MJ, Graddon, DP, Sheik, AR. Reaction of antimony(III) halides with Lewis bases. Thermochim Acta. 1978;27:269–280. .
23. Hamilton RT , Butler JA. The preparation of pure zinc chloride. J Chem Soc. 1932; 2283–4.
24. Niederl, JB, Sozzi, JA. Microanálisis elemental orgânico. 1 Buenos Aires: Methopress; 1958.
25. Kolthoff, IM, Sandall, EB. Tratado de química analítica cuantitativa. 3 Buenos Aires: Librería y editorial Nigar S.R.L; 1956.
26. Schwarzenbach, G, Flaschka, HA. Complexometric titration. 3 London: Methuen; 1969.
27. Dunstan, PO. Thermochemical parameters of α-picoline N-oxide adducts of some divalent transition metal bromides. J Therm Anal Cal. 2005;79:355–359. .
28. Henrigton, EF. Recommended reference materials for the realization of physicochemical properties (recommendation approved 1974). Pure Appl Chem. 1974;40:391–450. .
29. Kida, S, Quagliano, JV, Walmsley, JA, Tyree, SY. Zn(II), Al(III), Cr(III), Fe(II), Fe(III) and Sn(IV) complexes in the 3–15-μ region. Spectrochim Acta. 1963;19:189–199. .
30. Wagman, DD, Evans, WH, Parker, VB, Schumm, RH, Hallow, I, Churney, SM, Nuttall, RL. The NBS table of chemical thermodynamic properties. Selected values for inorganic and C1 and C2 organic substances in SI units. J Phys Chem Ref Data. 1982;2:144–145.
31. Keneshea, FJ, Cubicciotti, DD. Vapor pressure of cadmium chloride and thermo-dynamic data for CdCl2 gas. J Chem Phys. 1964;40:1778–1779. .
32. Kubaschewiski, O, Evans, EL, Alcock, CB. Metallurgical thermochemistry. 4 London: Pergamon; 1967.
33. Dunstan, PO. Thermochemistry of adducts of nickel(II) acetylacetonate chelate with heterocyclic bases. Thermochim Acta. 1998;317:165–174. .
34. Burkinshaw PM , Mortimer CT. Enthalpies of sublimation of transition metal complexes. J Chem Soc Dalton Trans. 1984; 75–7.