View More View Less
  • 1 Departamento de Físico-Química, Instituto de Química-UNESP, Caixa Postal 355, 14801-970, Araraquara, SP, Brazil
  • | 2 Departamento de Ciências Exatas e da Terra, UNIFESP, 09972-270, Diadema, SP, Brazil
Restricted access


The eutectoid transformation may be defined as a solid-state diffusion-controlled decomposition process of a high-temperature phase into a two-phase lamellar aggregate behind a migrating boundary on cooling below the eutectoid temperature. In substitutional solid solutions, the eutectoid reaction involves diffusion of the solute atoms either through the matrix or along the boundaries or ledges. The effect of Ag on the non-isothermal kinetics of the reverse eutectoid reaction in the Cu–9 mass%Al, Cu–10 mass%Al, and Cu–11 mass%Al alloys were studied using differential scanning calorimetry (DSC), X-ray diffraction (XRD), and scanning electron microscopy (SEM). The activation energy for this reaction was obtained using the Kissinger and Ozawa methods. The results indicated that Ag additions to Cu–Al alloys interfere on the reverse eutectoid reaction, increasing the activation energy values for the Cu–9 mass%Al and Cu–10 mass%Al alloys and decreasing these values for the Cu–11 mass%Al alloy for additions up to 6 mass%Ag. The changes in the activation energy were attributed to changes in the reaction solute and in Ag solubility due to the increase in Al content.

  • 1. Massalski, TB 1992 Binary alloy phase diagrams 2 American Society for Metals Ohio.

  • 2. Kulkarni, SD 1973 Thermodynamics of martensitic and eutectoid transformations in the Cu–Al system. Thermodynamique des transformations martensitique et eutectoide dans le systeme Cu–Al Thermodynamik martensitischer und eutektoider umwandlungen im system Cu–Al. Acta Metall 21 10 14611469 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 3. Kwarciak, J 1986 Kinetics of phase transformations in Cu–Al and Cu–Zn–Al alloys. J Therm Anal. 31:12791287 .

  • 4. Massalski, TB, Perepezko, JH 1973 Constitution and phase relationships in copper–silver–aluminum ternary-system. Z. Metallkd. 64:176181.

    • Search Google Scholar
    • Export Citation
  • 5. Adorno, AT, Cilense, M, Garlipp, W 1989 Phase relationships in the Cu–Ag–Al ternary system near the copper-rich corner. J Mater Sci Lett 8:12941297 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 6. Adorno, AT, Silva, RAG 2005 Phase transformations in the Cu–Al alloy with Ag addition. J Therm Anal Calorim 79:445449 .

  • 7. Adorno, AT, Silva, RAG, Carvalho, TM 2009 (α + γ1) Complex phase formation in the Cu–10 mass% Al–6 mass% Ag alloy. J Therm Anal Calorim 97:127130 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8. Baram, J, Erukhimovitch, V 1997 Application of thermal analysis methods to nucleation and growth transformation kinetics. Thermochim Acta 29:8184 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 9. Murray, JL 1985 The aluminium–copper system. Int Met Rev 30:211233.

Manuscript Submission: HERE

  • Impact Factor (2019): 2.731
  • Scimago Journal Rank (2019): 0.415
  • SJR Hirsch-Index (2019): 87
  • SJR Quartile Score (2019): Q3 Condensed Matter Physics
  • SJR Quartile Score (2019): Q3 Physical and Theoretical Chemistry
  • Impact Factor (2018): 2.471
  • Scimago Journal Rank (2018): 0.634
  • SJR Hirsch-Index (2018): 78
  • SJR Quartile Score (2018): Q2 Condensed Matter Physics
  • SJR Quartile Score (2018): Q2 Physical and Theoretical Chemistry

For subscription options, please visit the website of Springer.

Journal of Thermal Analysis and Calorimetry
Language English
Size A4
Year of
per Year
per Year
Founder Akadémiai Kiadó
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Publisher Akadémiai Kiadó
Springer Nature Switzerland AG
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
CH-6330 Cham, Switzerland Gewerbestrasse 11.
Chief Executive Officer, Akadémiai Kiadó
ISSN 1388-6150 (Print)
ISSN 1588-2926 (Online)