Authors:
A. G. Magdalena Departamento de Físico-Química, Instituto de Química-Unesp, Caixa Postal 355, Araraquara, SP, 14801-970, Brazil

Search for other papers by A. G. Magdalena in
Current site
Google Scholar
PubMed
Close
,
A. T. Adorno Departamento de Físico-Química, Instituto de Química-Unesp, Caixa Postal 355, Araraquara, SP, 14801-970, Brazil

Search for other papers by A. T. Adorno in
Current site
Google Scholar
PubMed
Close
,
T. M. Carvalho Departamento de Físico-Química, Instituto de Química-Unesp, Caixa Postal 355, Araraquara, SP, 14801-970, Brazil

Search for other papers by T. M. Carvalho in
Current site
Google Scholar
PubMed
Close
, and
R. A. G. Silva Departamento de Ciências Exatas e da Terra, Unifesp, Diadema, SP, 09972-279, Brazil

Search for other papers by R. A. G. Silva in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

In the Cu–Al system, due to the sluggishness of the β ↔ (α + γ1) eutectoid reaction, the β phase can be retained metastably. During quenching, metastable β alloys undergo a martensitic transformation to a β′ phase at Al low content. The ordering reaction β ↔ β1 precedes the martensitic transformation. The influence of Ag additions on the reactions containing the β phase in the Cu–11mass%Al alloy was studied using differential scanning calorimetry and in situ X-ray diffractometry. The results indicated that, on cooling, two reactions are occurring in the same temperature range, the β → (α + γ1) decomposition reaction and the β → β1 reaction, with different reaction mechanisms (diffusive for the former and ordering for the latter) and, consequently, with different reaction rates. For lower cooling rates, the dominant is the decomposition reaction and for higher cooling rates the ordering reaction prevails. On heating, the (α + γ1) → β reverse eutectoid reaction occurs with a resulting β phase saturated with α. The increase of Ag concentration retards the β → (α + γ1) decomposition reaction and the β → β1 ordering reaction, which occurs in the same temperature range, becomes the predominant process.

  • 1. Kulkarni, SD. Thermodynamics of martensitic and eutectoid transformations in the Cu–Al system. Acta Metall. 1973;21:14611469. .

  • 2. Massalski, TB. Binary alloy phase diagrams. 2 Metals Park: American Society for Metals; 1992.

  • 3. Adorno, AT, Guerreiro, MR, Benedetti, AV. Thermal behavior of Cu–Al alloys near the α–Cu–Al solubility limit. J Therm Anal Calorim. 2001;65:221229. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 4. Adorno, AT, Silva, RAG. Kinetics of martensite decomposition in the Cu–9Al–6Ag alloy. J Alloys Compd. 2005;402:105108. .

  • 5. Magdalena, AG, Adorno, AT, Silva, RAG, Carvalho, TM. Effect of Ag concentrations on the thermal behavior of the Cu–10mass%Al and Cu–11mass%Al alloys. J Therm Anal Calorim. 2009;97:4751. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Collapse
  • Expand

To see the editorial board, please visit the website of Springer Nature.

Manuscript Submission: HERE

For subscription options, please visit the website of Springer Nature.

Journal of Thermal Analysis and Calorimetry
Language English
Size A4
Year of
Foundation
1969
Volumes
per Year
1
Issues
per Year
24
Founder Akadémiai Kiadó
Founder's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Publisher Akadémiai Kiadó
Springer Nature Switzerland AG
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
CH-6330 Cham, Switzerland Gewerbestrasse 11.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 1388-6150 (Print)
ISSN 1588-2926 (Online)