Authors:
M. D. Fonseca Department of Metallurgical and Materials Engineering, UFRJ/COPPE-PEMM—Federal University of Rio de Janeiro, Alberto Luiz Coimbra Institute of Graduate Course and Research of Engineering, Av. Horácio Macedo, 2030—CT/UFRJ—Bloco F sala F210—Ilha do Fundão, Caixa Postal 68505, Rio de Janeiro, RJ, 21941-972, Brazil

Search for other papers by M. D. Fonseca in
Current site
Google Scholar
PubMed
Close
,
F. T. Silva Department of Metallurgical and Materials Engineering, UFRJ/COPPE-PEMM—Federal University of Rio de Janeiro, Alberto Luiz Coimbra Institute of Graduate Course and Research of Engineering, Av. Horácio Macedo, 2030—CT/UFRJ—Bloco F sala F210—Ilha do Fundão, Caixa Postal 68505, Rio de Janeiro, RJ, 21941-972, Brazil

Search for other papers by F. T. Silva in
Current site
Google Scholar
PubMed
Close
, and
T. Ogasawara Department of Metallurgical and Materials Engineering, UFRJ/COPPE-PEMM—Federal University of Rio de Janeiro, Alberto Luiz Coimbra Institute of Graduate Course and Research of Engineering, Av. Horácio Macedo, 2030—CT/UFRJ—Bloco F sala F210—Ilha do Fundão, Caixa Postal 68505, Rio de Janeiro, RJ, 21941-972, Brazil

Search for other papers by T. Ogasawara in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Feldspathic glass–ceramics reinforced with leucite are usually used in dental prosthesis. This study focused on leucite crystallization kinetics due to its importance to the end product of a dental crown processing. Leucite grains were nucleated and grown from feldspathic glass frit powders with particle size smaller than 45 μm. The nucleation and crystallization kinetics of leucite crystals in the glass matrix was investigated under isothermal and non-isothermal conditions through differential thermal analysis. The samples were also characterized by X-ray diffraction and scanning electron microscopy. The temperature of maximum nucleation rate was determined from the DTA curves of samples heat treated at different temperatures. The activation energy (E) of leucite crystallization was determined by the Kissinger method and the Avrami parameter (n) indicated that surface crystallization is the dominant mechanism in the glass.

  • 1. Gorman, CM, Hill, RG. Heat-pressed ionomer glass-ceramics. Part I: an investigation of flow and microestrure. Dent Mater. 2003;19:320326. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 2. Cabral, AA, Fokin, VM, Zanotto, ED, Chinaglia, CR. Nanocrystallization of fresnoite glass. I. Nucleation and growth kinetics. J Non-Cryst Solids. 2003;330:174186. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 3. Cheng, K. Determining crystallization kinetic parameters of Li2O–Al2O3–SiO2 glass from derivative differential thermal analysis curves. Mater Sci Eng B. 1999;60:194199. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 4. Tosic, MB, Dimitrijevic, RZ, Mitrovic, MM. Crystallization of leucite as the main phase in glass doped with fluorine anions. J Mater Sci. 2002;37:22932303. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 5. Cattell, MJ, Chadwick, TC, Knowles, JC, Clarke, RL. The crystallization of an aluminosilicate glass in the K2O–Al2O3–SiO2 system. Dent Mater. 2005;21:811822. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 6. Song, X-F, Yin, L, Han, Y-G. In-process assessment of dental cutting of a leucite-reinforced glass-ceramic. Med Eng and Phys. 2009;31:214220. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7. Ray, CS, Day, DE. Determining the nucleation rate curve for lithium disilicate glass by differential thermal analysis. J Amer Ceram Soc. 1990;73:439442. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8. Souza, JCM, Nascimento, RM, Martinelli, AE. Efeito da condensação e queima na formação de defeitos microestruturais em cerâmicas feldspáticas dentárias. Cerâmica. 2007;53:288294. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 9. Zanotto, ED. Isothermal and adiabatic nucleation in glass. J Non-Cryst Solids. 1987;89:361370. .

  • 10. Zhang, Y, Lv, M, Chen, D, Wu, JQ. Leucite crystallization kinetics with kalsilite as a transition phase. Mater Lett. 2007;61:29782981. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11. Takei, T, Kameshima, Y, Yasumori, A, Okada, K. Crystallization kinetics of mullite from Al2O3–SiO2 glasses under non-isothermal conditions. J Eur Ceram Soc. 2001;21:24872493. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 12. Park, HC, Lee, SH, Ryu, BK, Son, MM, Lee, HS, Yasui, I. Nucleation and crystallization kinetics of CaO–Al2O3–2SiO2 in powdered anorthite glass. J Mater Sci. 1996;31:42494253. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13. Araújo, EB, Idalgo, E. Non-isothermal studies on crystallization kinetics of tellurite 20Li2O–80TeO2 glass. J Therm Anal Calorim. 2009;95:3742. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 14. Majhi, K, Varma, KBR. Crystallization kinetics of SrBi2B2O7 glasses by non-isothermal methods. J Therm Anal Calorim. 2009;98:731736. .

  • 15. Gupta, N, Dalvi, A. Thermal stability and crystallization kinetics in superionic glasses using electrical conductivity-temperature cycles. J Therm Anal Calorim. 2010;102:851855. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 16. Tosic, MB, Mitrovic, MM, Dimitrijevic, RZ. Crystallization of leucite as the main phase in aluminosilicate glass with low fluorine content. J Mater Sci. 2000;35:36593667. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 17. Augis, JK, Bennet, JE. Calculation of the Avrami parameters for heterogeneous solids state reactions using a modification of the Kissinger method. J Therm Anal Calorim. 1978;13:283292. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 18. Li, Y, Liang, K, Xu, B, Cao, JW. Crystallization mechanism and microstructure evolution of Li2O–Al2O3–SiO2 glass-ceramics with Ta2O5 as nucleating agent. J Therm Anal Calorim. 2010;101:941948. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Collapse
  • Expand

To see the editorial board, please visit the website of Springer Nature.

Manuscript Submission: HERE

For subscription options, please visit the website of Springer Nature.

Journal of Thermal Analysis and Calorimetry
Language English
Size A4
Year of
Foundation
1969
Volumes
per Year
1
Issues
per Year
24
Founder Akadémiai Kiadó
Founder's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Publisher Akadémiai Kiadó
Springer Nature Switzerland AG
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
CH-6330 Cham, Switzerland Gewerbestrasse 11.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 1388-6150 (Print)
ISSN 1588-2926 (Online)