View More View Less
  • 1 Laboratório de Catálise e Oleoquímica, ICEN, UFPA, Belém, PA, Brazil
Restricted access

Abstract

Al-modified MCM-41, La-modified MCM-41, and Ce-modified MCM-41 mesoporous materials were prepared with different molar ratios (Si/M = 10; 25; 50; 100 and 200) at room temperature. The materials were characterized using XRD, BET–BJH, and TG–DTA. The XRD showed four peaks, due to the ordered hexagonal array of parallel silica tubes, which could be indexed as (100), (110), (200), and (210), assuming a hexagonal unit cell. The surface area decreased as the concentration of the metal incorporated in the material increased. The thermal stability of the materials was around 650 °C. The CeO2 phase made the mass transfer process more difficult, hindering Hofmann degradation and favoring oxidation.

  • 1. Selvam, P, Bhatia, SK, Sonwane, CG. Recent advances in processing and characterization of periodic mesoporous mcm-41 silicate molecular sieves. Ind Eng Chem Res. 2001;40:32373261. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 2. Zhao, Q, Xu, Y, Li, Y, Jiang, T, Li, C, Yin, H. Effect of the Si/Ce molar ratio on the textural properties of rare earth element cerium incorporated mesoporous molecular sieves obtained room temperature. Appl Surf Sci. 2009;255:94259429. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 3. Souza, MJB, Silva, AOS, Aquino, JMFB, VJ Fernandes Jr, Araújo, AS. Kinetic study of template removal of MCM-41 nanostructured material. J Therm Anal Calorim. 2004;75:693698. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 4. Cai, Q, Lin, W-Y, Xiao, F-S, Pang, W-Q, Chen, X-H, Zou, B-S. The preparation of highly ordered MCM-41 with extremely low surfactant concentration. Microporous Mesoporous Mater. 1999;32:115. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 5. Araujo, SA, Araujo, AS, Fernandes, NS, VJ Fernandes Jr, Ionashiro, M. Effect of the catalyst MCM-41 on the kinetic of the thermal decomposition of poly(ethylene terephthalate). J Therm Anal Calorim. 2010;99:465469. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 6. Casuscelli, SG, Eimer, GA, Canepa, A, Heredia, AC, Poncio, CE, Crivello, ME, Perez, CF, Aguilar, A, Herrero, R. Ti-MCM-41 as catalyst for α-pinene oxidation. Study of the effect of Ti content and H2O2 addition on activity and selectivity. Catal Today. 2008;133–135:678683. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7. Sun, Y, Yue, Y, Gao, Z. Synthesis and characterization of AlMCM-41 molecular sieves. Appl Catal A Gen. 1997;161:121127. .

  • 8. Ajaikumar, S, Pandurangan, A. Esterification of alkyl acids with alkanols over MCM-41 molecular sieves: influence of hydrophobic surface on condensation reaction. J Mol Catal A Chem. 2007;266:110. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 9. Chen, X, Huang, L, Ding, G, Li, Q. Characterization and catalytic performance of mesoporous molecular sieves Al-MCM-41 materials. Catal Lett. 1997;44:123128. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10. Du, G, Lim, S, Yang, Y, Wang, C, Pfefferle, L, Haller, GL. Catalytic performance of vanadium incorporated MCM-41 catalysts for the partial oxidation of methane to formaldehyde. Appl Catal A Gen. 2006;302:4861. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11. Anilkumar, M, Hölderich, WF. Highly active and selective Nb modified MCM-41 catalysts for Beckmann rearrangement of cyclohexanone oxime to epsilon-caprolactam. J Catal. 2008;260:1729. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 12. Morey, M, Davidson, A, Eckert, H, Stucky, G. Pseudotetrahedral O3/2V O centers immobilized on the walls of a mesoporous, cubic MCM-48 support: preparation, characterization, and reactivity toward water as investigated by 51V NMR and UV–Vis spectroscopies. Chem Mater. 1996;8:486492. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13. Grubert, G, Rathouský, J, Schulz-ekloff, G, Wark, M, Zukal, A. Reducibility of vanadium oxide species in MCM-41. Microporous Mesoporous Mater. 1998;22:225236. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 14. Goworek, J, Borówka, A, Zaleski, R, Kusak, R. Template transformations in preparation of MCM-41 silica. J Therm Anal Calorim. 2005;79:555560. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15. Cope, A, Norman, A, Lebe, L, Moore, PT, Moore, WR. Mechanism of the Hofmann elimination reaction: evidence that an ylide intermediate is not involved in simple compounds. J Am Chem Soc. 1961;83:38613865. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 16. Kleitz, F, Schmidt, W, Schuth, F. Evolution of mesoporous materials during the calcination process: structural and chemical behavior. Microporous Mesoporous Mater. 2001;44–45:95109. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 17. Ryczkowski, J, Goworek, J, Gac, W, Pasieczna, S, Borowiecki, T. Temperature removal of templating agent from MCM-41 silica materials. Thermochim Acta. 2005;434:28. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 18. Keene, MTJ, Gougeon, RDM, Denoyel, R, Harris, RH, Rouquerol, J, Llewellyn, PL. Calcination of the MCM-41 mesophase: mechanism of surfactant thermal degradation and evolution of the porosity. J Mater Chem. 1999;9:2843 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19. Goworek, J, Kierys, A, Gac, W, Borówka, A, Kusak, R. Thermal degradation of CTAB in as-synthesized MCM-41. J Therm Anal Calorim. 2009;96:375382. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 20. Occelli, ML, Biz, S, Auroux, A. Effects of isomorphous substitution of Si with Ti and Zr in mesoporous silicates with the MCM-41 structure. Appl Catal A Gen. 1999;183:231239. .

    • Crossref
    • Search Google Scholar
    • Export Citation

Manuscript Submission: HERE

  • Impact Factor (2019): 2.731
  • Scimago Journal Rank (2019): 0.415
  • SJR Hirsch-Index (2019): 87
  • SJR Quartile Score (2019): Q3 Condensed Matter Physics
  • SJR Quartile Score (2019): Q3 Physical and Theoretical Chemistry
  • Impact Factor (2018): 2.471
  • Scimago Journal Rank (2018): 0.634
  • SJR Hirsch-Index (2018): 78
  • SJR Quartile Score (2018): Q2 Condensed Matter Physics
  • SJR Quartile Score (2018): Q2 Physical and Theoretical Chemistry

For subscription options, please visit the website of Springer.

Journal of Thermal Analysis and Calorimetry
Language English
Size A4
Year of
Foundation
1969
Volumes
per Year
4
Issues
per Year
24
Founder Akadémiai Kiadó
Founder's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Publisher Akadémiai Kiadó
Springer Nature Switzerland AG
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
CH-6330 Cham, Switzerland Gewerbestrasse 11.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 1388-6150 (Print)
ISSN 1588-2926 (Online)